LOW-FREQUENCY RAMAN SPECTROSCOPY OF PHOSPHOLIPID MEMBRANES

N.V. Surovtsev

Institute of Automation and Electrometry, Russian Academy of Sciences

A number of peculiar features in the terahertz vibrational spectrum, which is manifested in the low-frequency Raman spectrum, are expected for 2D-like objects with the nanometer thickness as phospholipid bilayers. One can hope that the low-frequency Raman spectrum should have information about the thickness breathing mode of the phospholipid layers and about the acoustic-like excitations.

Phospholipid bilayers (membranes), vesicles

Phases of phospholipid bilayers

Raman spectroscopy

Raman spectrum reflects the vibrational spectrum of material and provides the information about its chemical content and phase state.

Terminal CH, symmetric stretch

Low-frequency (<100 cm⁻¹) Raman is in the acoustic-like range

Low-frequency Raman spectrum of 2D-like phospholipid layers

Acoustic-like vibrational modes along layers

Acoustic-like modes with the effective wavevector crossing layers or localized modes (e.g. the thickness breathing modes)

Low-frequency Raman spectra are promising for obtaining information about the thickness, modulus of elasticity, and lateral ordering on the nanometer scale.

Thickness breathing modes of phospholipid bilayers

Lowest vibrational mode of a thick plate with thickness of 2d

$$v_N[cm^{-1}] = \frac{c_S}{4cd}$$

c_S is sound velocityc is speed of light

Estimation for Bilayer eigenmode

if
$$2d = 5$$
 nm, $c_S = 2.4$ km/s

$$\rightarrow$$
 $v_1 = 8 \text{ cm}^{-1}$

The case of poor elastic contact between layers of a bilayer

 \rightarrow $v_1 = 16 \text{ cm}^{-1}$

Monolayer eigenmode

Low-frequency Raman set-up

It is possible to measure low-frequency Raman spectrum of phospholipid suspensions down to 5 cm⁻¹.

Raman spectra of aqueous suspensions of phospholipid vesicles

N.V. Surovtsev et al // Phys. Rev. E 95 (2017) 032412

16:0 PC (DPPC),
$$T_m = 314 \text{ K}$$

16:0-18:1 PC (POPC), $T_m = 271 \text{ K}$

Raman peaks, attributed to bilayer and monolayer eigenmodes, are observed simultaneously!

GOAL:

Can the low-frequency peak be used for revealing the coexisting domains in multicomponent membranes?

Phase diagram for phospholipid-cholesterol mixtures

Low-frequency Raman spectra of frozen phospholipid vesicles

Parameters of the low-frequency peak (monolayer mode) contradict to the coexisting domains hypothesis for binary systems of phospholipid-cholesterol

<u>Low-frequency Raman spectrum – sensitivity to the phase state</u> <u>of phospholipid bilayers</u>

<u>Low-frequency Raman spectrum – sensitivity to the phase state</u> <u>of phospholipid bilayers</u>

N.V. Surovtsev, S.V. Adichtchev
// J. Raman Spectrosc. 51 (2020) 952

Raman susceptibility of the aqueous suspension of DMPC vesicles

Interpretation:

Acoustic-like excitations propagating along layers.

Low-temperature Raman spectra of mono- and binary (DPPC, DOPC, Chol) bilayers

<u>Difference spectra – the test for the coexistence of domains of different phases</u>

Если: $S_{AB}(\omega) = aS_A(\omega) + (1-a)S_B(\omega)$

((a)

To: $S_{AB}(\omega) - S_{B}(\omega) = a(S_{A}(\omega) - S_{B}(\omega))$

Difference spectra should have the same spectral shape

"Magnitude" of the difference spectrum corresponds to the contribution of one of the component

<u>Difference spectra – the test for the domain coexistence</u>

DOPC-DPPC mixtures

The master curve as evidence of the domain coexistence

Difference spectra – the test for the domain coexistence

DPPC-Chol mixtures

The master curve works for frequencies above 30 cm⁻¹

For sound velocity 2 KM/c, 30 cm⁻¹ corresponds to the wavelength of 2 nm

Coexistense of phospholipidcholesterol complexes, but homogeneity for the scales above 2 nm

Conclusions

The low-frequency Raman spectrum of phospholipid membranes has contributions from the thickness breathing modes of the phospholipid layers and the acoustic-like excitations.

These spectra should be useful for characterizing the elastic modulus and layer thickness, their temperature dependences, the sensitivity to the phase state and for the domain coexistence problem.

