X International Voevodsky Conference "Physics and Chemistry of Elementary Chemical Processes" (VVV-2022)

Palladium atoms and clusters at ceria nanoparticles: a DFT study

Shor E.A., Shor A.M., Nasluzov V.A.

Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, Russia

September, 6, 2022

Single-atom catalyst (SAC)

SACs efficiency approaches that of homogeneous systems Are properties of SAC correlate with those of homogeneous and heterogeneous systems?

Pacchioni G. et al. Acc. Mater. Res. 2022

Pd/ceria catalysts

- CO oxidation to CO₂
 - Water-Gas-Shift reaction $CO + H_2O = CO_2 + H_2$
 - solid oxide fuel cell
 - Conversion of automobile exhaust gases

High mobility of lattice oxygen (energy of O removal – 2.3-2.6 eV)

Why palladium?

$$O^{2-} + Ce^{4+} \rightarrow O_V + 2Ce^{3+}$$

Me⁰ + Ce⁴⁺ \rightarrow Meⁿ⁺+ nCe³⁺

- Strong metal-support interaction (energy of metal trapping 2-4 eV)
- Nanostructuring affects catalytic performance (enhancement by 2 times of CO oxidation at Au/nano-CeO₂)

Nanosized Particle Ce₂₁O₄₂

Migani, Vayssilov, Bromley, Illas, Neyman, Chem. Commun. 46 (2010) 5936.

Computational details

- Vienna Ab-initio Simulation Package (VASP) code
- Perdew-Wang (PW91) exchange-correlation functional
- Projected augmented wave (PAW) formalism
- Kinetic energy cut off of 415 eV
- Hubbard U term = 4 to describe localized Ce 4f states
- Unit cell size 20 × 20 × 20 Å

Open questions

- 1) What about stability of atomic and few-atom Pd particles at ceria surfaces?
- 2) How is to identify single-atom Pd species adsorbed at ceria?
- 3) How mobility of oxygen is changed upon adsorption of Pd particles on ceria?
- 4) Whether the transformation and denucleation of Pd clusters is feasible?

Structure and Adsorption energy

Regular CeO₂ (100) surface

Pd species are oxidized and strongly bound

Nasluzov et al. Surface Science, 2019, V.681, P. 38–46.

Regular CeO₂ (111) surface

Weaker bonding by ~1-2 eV than at {100} facet for both metals

r(Ag-O)=223; 2×247 pm CN(Ag)=3 Ag_3 Ag₄ Ag E_{ad}=-1.22; 1(Ce³⁺) E_{ad}=-2.47; 1(Ce³⁺) E_{ad}=-1.99; 2(Ce³⁺)

Nasluzov et al. Surface Science, 2019, V.681, P. 38–46.

Site identification with CO frequencies

Oxygen vacancy formation

Oxygen vacancy formation in pristine $Ce_{21}O_{41}$

CN – coordination number

O vacancy formation leads to reduction of two Ce^{4+} ions to Ce^{3+}

Calc. values for infinite surfaces (HSE) $CeO_2 (100) = 2.3 \text{ eV} [1]$ $CeO_2 (111) = 2.65; 3.10 \text{ eV} [2]$

Migani et al, J. Mater. Chem. 20 (2010) 10535.
Sauer, Phys. Rev. Lett. 102 (2009) 026101.

Extra-framework Pd species

O vacancy is created in the most favored O29 position (values in parenthesis for O vacancy in O41 position)

O vacancy formation energy \uparrow compared to metal-free particles (1.56 eV)

Extra-framework Pd species disfavor O release from ceria

Intra-framework Pd species

Pd in position 15

Pd in position 1

Intra-framework Pd species favor O release from ceria

Cluster structure stability

Deformation of Pd_n (n=2-4) particles

Stability of distorted clusters is high Migration barriers for Pd atoms are low

Conclusions

- 1) Extra stabilization of monoatomic Pd and few-atomic Pd_n species at {100} facet of ceria nanoparticle with formation of local square-planar PdO₄ fragment was calculated. Adsorption at {111} is by 1-2 eV weaker and comparable to Ag_n particles.
- 2) Ceria-supported Pd atoms at {100} can be probed by adsorbed CO molecule. Calculated red shift of CO frequency at 84-113 cm⁻¹ agrees with experimental values.
- 3) Adsorbed at ceria Ce₂₁O₄₂ nanoparticle extra-framework Pd species disfavor release of lattice oxygen by 0.5 eV. Opposite, intra-framework Pd atoms leads to spontaneous removal of one lattice O atom from nearest Pd environment.
- 4) Few-atom Pd particle adsorbed at {100} facet of $Ce_{21}O_{42}$ nanoparticle are prone to deformation due to migration of one Pd atom to {111} facet. Distorted forms are created with small activation barriers and thermodynamically stable.

Acknowledgements

Colleagues and co-authors:

Aleksey M. Shor Vladimir A. Nasluzov Konstantin M. Neyman Computational resources:

Siberian Supercomputer Center Lomonosov Supercomputer Center

Tnahk you for attention!