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While nutation is used in NMR spectroscopy, 

it is less used in EPR spectroscopy. 

This is because the theory of the transient 

nutation method is much less developed 

than the theory of steady-state EPR spectra. 

Therefore, it is difficult to extract the

magnetic resonance parameters

of the spin system from EPR experimental

data.

Current 

situation







Why quantum 

spin nutation

theory is deviating 

from theory of 

Torry?

This deviation is caused by the fact

that in the presence of 

spin-spin interactions 

the spin dynamics

is not described properly

by Bloch equations





CONFIRMATION THAT 

UNDER NON-

SELECTIVE EXCITATION

of spins nutation does 

not give information 

about the value of spin 

S.

Spin – Hamiltonian in rotating frame

Hr= 1Sx  
Non-selective excitation of spins.

Operator of the non-selective excitation of spins

L=exp(-i 1 Sxt)

Nutation frequency equals 1

for ANY value of spin S! 



Quantum theory of 

spin nutation:

The change of

magnetization of spins 

with time when the

external MW field is

suddenly switched on.

A simple example of nutation.

Relaxation is neglected.

Hr= 0Sz -Sz+1Sx;    ρ(0) =ρeq =Sz.

ρ(t)=exp(-iHrt) ρ(0) (exp(iHrt);

My=Tr(Syρ(t))

Possible nutation frequencies

are differences Ern-Erm, 

Possible EPR frequencies in a rotating frame  



NON-SELECTIVE 

EXCITATION

Nutation frequencies

for simple model with

Hr= 0Sz -Sz+1Sx

For 0 = 
Hr= 1Sx

In basis of m>,

the eigen states of Sz, nonzero elements of Hr are equal to 

(Hr)m,m-1=(Hr)m-1,m=(1/2) {(S+m)(S-m+1)}1/2. 

Thus transition matrix elements of Hr do depend on m value. 

But nutation frequency manifests the difference between 

eigenvalues of the spin-Hamiltonian Hr. 

Those eigenvalues are equidistant energy levels separated by 

independent on the S value:  

Er={1S, 1(S-1),..., -1 S}.



Effect of initial state of 

spins on manifestation 

of nutation 

frequencies

for simple model with

Hr= 0Sz -Sz+1Sx

ρ0 =Sz

ρ(t)=exp(-iHrt) Sz (exp(iHrt);  My=Tr(Syρ(t))

There might be nutation frequencies

1, 21, ..., 21 S. 

But according to calculations presented above 

only one frequency, 1, appeared. 

This the is result of the definite choice of the 

initial state of spins, ρ0 =Sz, and on observable, 

Sy, since both operators, Sy and Sz, have only 

one quantum coherences in the basis of the 

eigenstates in the simple situation presented in 

previous slide. 





Frequency 

selective 

excitation
of spins in the first 

approximation of the 

perturbation theory 

for the

model system, 

considered on the 

previous slide 

Simple example: Hr= 0 Sz - Sz+ DSz
2 +1 Sx; S=1; 

=0+D;

  Hr=

0 1/ 2 0

1/ 2 0 1/ 2
0 1/ 2 2𝐷  

Under chosen conditions 2 energy levels have equal 

energies (0) and the 3-rd has energy 2D. If 1 << D,

then in the first order of the perturbation theory

(1 / D<<1)

Hr ≈ 0 1/ 2 0
1/ 2 0 00 0 2𝐷



Selective excitation of 

spins in the first 

approximation of the 

perturbation theory 

for the

model system, 

considered on 

previous slide 

Thus, in this approximation only one (12)

transition is selectively excited and nutation 

frequency equals 2 1 instead of being 

equal to 1 in the case of nonselective 

approximation.

If =0-D, then only one (23)

transition is selectively excited and nutation 

frequency equals again 2 1





Selective excitation 

of spins in

a general case for 

the model system 

  Hr=

0 1/ 2 0

1/ 2 0 1/ 2
0 1/ 2 2𝐷  

For the spins

with S=1 and the spin-Hamiltonian presented above 

the nutation was numerically calculated 

using the theoretical expression 

My=Tr{Sy exp(-iHrt) Sz (exp(iHrt)} .









ρ(t)=exp(-iHrt) ρ(0) (exp(iHrt)

In basis of the Hr eigenstates any oscillations of an 
observed signal are determined by the spin 
coherences

ρkn(t)= ρkn(0)exp(-i kn)t), kn=(Er)k-(Er)n.

Contributions of terms with different frequencies 
kn depend on ρkn(0) and 

observable Q. Note in Torry case Q=Sy

Frequencies 

determined 

when nutation

is observed.

EPR in rotating 

frame?



What is today 

quantum spin 

nutation 

theory?

There are numerous examples of quantum 

calculations of spin moment motion after 

sudden switching on of alternating 

magnetic fields.

Results: 
When excitation of spins happens to be 

the really non-selective and 

the initial state of spin can be described as  ρ0 =Sz

we obtain Torry results for nutation



What is today 

quantum spin 

nutation 

theory?

When only one resonance transition 

is excited by

the alternating field we obtain Torry-

type nutation with

the frequency of nutation depending 

on the value of spin S.



What is today 

quantum spin 

nutation 

theory?

When spin-spin interaction is 

comparable with the interaction of 

spins with alternating field B1 

then a motion of magnetization 

vector is not nutation. 

There are manifested several 

oscillating contributions

to the observed signal.



What is today 

quantum spin 

nutation 

theory?

When spin-spin interaction is 

comparable 

with the interaction of spins with 

alternating field B1

the module of the magnetic moment 

is changing essentially with time.



Why quantum 

spin nutation

theory is deviating 

from theory of 

Torry?

This deviation is caused by the fact

that in the presence of 

spin-spin interactions 

the spin dynamics

is not described properly

by Bloch equations



Why Bloch 

equations appear 

to be not 

applicable for 

describing spin 

dynamics in 

general case?

Bloch equations assumes that the 

magnetization (dipole moment)

of spin provides full description

of the spin state. 

Therefore Torry nutation theory

is valid only for non-interacting 

particles with spin S=1/2.

But this is true

only for particles with S=1/2.



How do we describe 

the spin states 

For the case S=1, full description of the spin state 

is given by its dipole and quadrupole moments:

Fx=(1/Sqrt[2]) {{0,1,0},{1,0,1},{0,1,0}};

Fy=(1/Sqrt[2]) {{0,-I,0},{I,0,-I},{0,I,0}};

Fz={{1,0,0},{0,0,0},{0,0,-1}};

E={{1,0,0},{0,1,0},{0,0,1}};

Fxxyy=Fx.Fx-Fy.Fy;

Fzz=Fz.Fz-(2/3) FF;

Fxy=Fx.Fy+Fy.Fx;

Fxz=Fx.Fz+Fz.Fx;

Fyz=Fy.Fz+Fz.Fy;



Coupled equations 

of the first 

derivatives of 

observables

Simple equation of “nutation” of S=1.

Hr= 0Sz -Sz+D Sz^2+1Sx; ρ(0) =ρeq =Sz.

Sx/t=D Sy-D Qyz;

Sy/t=-D Sx-1 Sz+D Qxz;

Sz/t=1 Sy;

Qxy/t=-2 D Qxxyy-1 Qxz;

Qxz/t=-D Sy+1 Qxy+D Qyz; (3)

Qyz/t=D Sx-1 Qxxyy-3 1 Qzz-D Qxz;

Qzz/t=1 Qyz;

Qxxyy/t=2 D Qxy+1 Qyz.

For t=0 only one variable is non-zero

when Eq.(6) case operates: Fz(0)=2



Coupled equations 

of second 

derivatives of 

observables

Simple example of “nutation” of S=1.

Hr= 0Sz -Sz+D Sz^2+1Sx; ρ(0) =ρeq =Sz.

Fx‘’=D(2D(-Fx+Fxz)+(Fxxyy-Fz+3Fzz)w1),     (D Sqrt[2])

Fy‘’=2D2(-Fy+Fyz)+Fxy Dw1-Fy w12,  (Sqrt[w1^2+2D^2])

Fz''=-w1(D(Fx-Fxz)+Fzw1),                   (w1)

Fxxyy‘’=-4D2 Fxxyy+Dw1(Fx-3 Fxz)-(Fxxyy+3Fzz) w12, (Sqrt[w1^2+4D^2])

Fzz''=-w1(D(-Fx+Fxz)+(Fxxyy+3Fzz) w1),      w1 Sqrt[3])

Fxy‘’=-4D2 Fxy+Dw1(Fy-3Fyz)-Fxy w12, (Sqrt[w1^2+4D^2])

Fxz‘’=2D2(Fx-Fxz)+Dw1(-3Fxxyy+Fz-3Fzz)-Fxz w12 (Sqrt[w1^2+2D^2])

Fyz‘’=2D2(Fy-Fyz)-3Dw1 Fxy-4FyzD w12. (Sqrt[4w1^2+2D^2])

For t=0 and Eq.(6) there are in thermal equilibrium two non-zero 

variables only:            Fz(0)=2, Fy’(0)=-2 w1.



Equations for 

limit cases

D=0

Fx‘’=0, 

Fy‘’=-Fy w12,

Fz‘’=-Fz w12, 

Fxxyy‘’=-(Fxxyy+3Fzz) w12, 
Fzz''=-(Fxxyy+3Fzz) w12),   

Fxy‘’=-Fxy w12, 

Fxz‘’=-Fxz w12

Fyz‘’=-4Fyz w12. 

1=0  

Fx‘’=2D2(-Fx+Fxz),     
Fy‘’=2D2(-Fy+Fyz),  

Fz‘’=0,                   
Fxxyy‘’=-4D2 Fxxyy,

Fzz‘’=0,
Fxy‘’=-4D2 Fxy
Fxz‘’=2D2(Fx-Fxz),
Fyz‘’=2D2(Fy-Fyz).



Time 

dependence 

of dipole 

moment 

projections

1=1 Gs, 

D=1 Gs,

=0+D

My, Mz



Time 

dependence 

of dipole

moment 

projections

1=1 Gs, 

D=1 Gs,

=0+D

Mx, My



Time 

dependence 

of 

quadrupole 

components

1=1 Gs, D=1 

Gs,

=0+D

Mx, Mz



Time 

dependence of 

quadrupole 

components:

1= Gs,

D=1 Gs,

=0+D

YZ XZ

XY X^2-Y^2

Z^2



3D picture of 

the dipole 

moment motion

1= Gs,

D=1 Gs,

=0+D,

tmax=130



Conclusions

➢ The “nutation” of the dipole moment of spins, taking into 
account the spin-spin interaction, cannot be reduced to Torrey 

nutation, in principle.

➢ “Nutation” of spins in the presence of spin-spin interaction 

cannot be understood without taking into account the 

multipole moments of spins.

➢ For the spin S=1, a system of coupled linear differential 

equations for the projections of the dipole magnetic moment 

and the components of the quadrupole magnetic moment is 

obtained explicitly.

➢ The Bloch equations cannot be used to describe the "nutation" 

of interacting spins (including the splitting of spin energy levels 

in a zero magnetic field).
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