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Quantum cellular automata based on mixed valence
molecules (clusters)

1 Molecular Quantum Cellular Automata (QCA) - (Craig S. Lent et al)

The main idea of QCA is to encode binary information in charge
distribution in two-electron mixed-valence molecular square
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QCA logic gates: majority gate functioning as AND and OR
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QCA cell based on two-electron mixed-valence molecular square
— key interactions

Diagonal-type electronic distributions can be used to Example of molecular square cell -
encode binary information Creutz-Taube derivative
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Intracell interelectronic Two types of one-electron
Coulomb repulsion transfer processes Intercell Coulomb interaction
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Pseudo-Hubbard-type Hamiltonian of the free cell and its eigenvalues
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¢ For t,=0 ground state always possesses 5=0;
¢ For t +0 the ground state can have either 5=0 or 5=1 dependingon t,, t, and U



Effect of electrostatic field induced by polarized driver-cell

Weak non-linear Stark effect for
“delocalized” orbital singlets with 5=0

Limit of strong
Coulomb repulsion -
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Strong linear Stark effect for “localized”
orbital doublets with 5=1

P = Pyy — Pay
Prs * Pyy

p=2"Fu
Pt Pz

— polarization of “driver-cell”
P ( P") - “cellcell response function”

— polarization of “working cell”
Electric field effect is snin-dependent

=> such cells can be regarded as single-molecule magnetoelectrics

A. Palii, , B. Tsukerblat, J. M. Clemente-Jluan, E. Coronado, J. Phys. Chem. C,
120, 16994 (2016).



Limits of zero and strong electric field and possibility of spin-switching
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‘ 5=0 a=1

[, /U < () —ground stateis always that with S=0

t,/U >1/4 —ground stateis always that having S=1

[ 0<t, /U < 1/4 — ground state can be switched from $=0 to §=1 J




Spin-switching in the working cell induced by electric field of
polarized driver-cell

t,/U <0 —ground stateis always that with S=0

t,/U >1/4 - ground stateis always that having S=1

[ 0< .'ﬁ,/U < 1/4 — ground state can be switched from $=0 to 5=1 ]
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In addition to QCA function additional
spin-switching function appears due to magnetoelectric effect



Clusters with double exchange as another example
of spin-switchable QCA cells
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Effects of double exchange and HDVV exchange
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Physical origin of antiferromagnetic
effect of double exchange
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Ground state of the double
exchange Hamiltonian has 5=0.

Ground state of HDVV Hamiltonian has 5=1

Double exchange and HDVV
exchange produce competitive
effects



Combined effect of double exchange and HDVV exchange in the limit of
strong Coulomb repulsion

Strong-U - limit (second-order

perturbation theory)
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Energy levels of the working cell subjected by the quadrupole

Coulomb field of the driver-cell

Stark Hamiltonian Total Hamiltonian
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For states with 5=3 and S=1 — strong linear Stark effects
For states with § = 0 —weak non-linear Stark effects




Types of switching occurring at v =250 cm™!, 7=40 cm™! and
different J — values
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Summary

# Under some conditions the electrostatic
field induced by the polarized driver-
cell can induce the spin-switching
between the different spin-states,

& Spin-switching results in the
nonmonotonic  behavior of  cell-cell
response functions due to the fact that
different spin-states exhibit different
polarizabilities with respect to the
quadrupole field induced by the driver-
cell;

®The performed study  allows to
considerably extend the class of systems
suitable for QCA design and to supply the
QCA-based devices with pew useful
Tunctions, such as spin-switching.
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