

X International Voevodsky Conference "Physics and Chemistry of Elementary Chemical Processes" (VVV-2022)

O22 Novosibirsk 05-09 Sep 2022

Adiabatic approach to polarize ¹⁵N nuclei with SABRE at high magnetic fields

Markelov D. A.^{1,2}, Kozinenko V. P.^{1,2}, Yurkovskaya A. V.¹

¹ International Tomography Center SB RAS, Institutskaya 3A, 630090, Novosibirsk, Russia
² Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia

Hyperpolarization in NMR

Low sensitivity of NMR methods:

$$p_{eq} = \frac{p_{\alpha} - p_{\beta}}{p_{\alpha} + p_{\beta}} \approx \frac{\hbar \gamma_N B_0}{2k_B T} \ll 1$$

For protons at $B_0 = 15 \text{ T}$, T = 300 K

$$p_{eq} \approx 5 \times 10^{-5}$$

Para-hydrogen Induced Polarization (PHIP)

PHIP and SABRE

Para-hydrogen Induced Polarization (PHIP)

Hydrogenation of the substrate

Signal Amplification by Reversible Exchange (SABRE)

No hydrogenation

Polarization transfer complex

Strong coupling condition is fulfilled artificially in rotating reference frame (RF-pulses)

SABRE

 $(\delta \nu \cong J - \text{strong coupling condition})$

For ¹⁵N works at $B_0 \sim 10^{-6} - 10^{-7} \text{ T}$

Special experimental setup is required

High-field RF-SABRE

No extra equipment

Complicated experimental optimization

Level anti-crossing (LAC)

$$\widehat{H} = \widehat{H}_0 + \widehat{V}
\langle \varphi_1 | \widehat{V} | \varphi_2 \rangle \neq 0$$

Quantum states $|\varphi_1\rangle$, $|\varphi_2\rangle$ tend to cross, but due to the perturbation \hat{V} the degeneracy is lifted and the crossing is avoided (LAC)

Adiabatic passage through level anti-crossing (Landau-Zener problem)

Populations exchange between the states $|\varphi_1\rangle$, $|\varphi_2\rangle$

The simplest variant of the high-field SABRE using adiabatic RF-switching

 $v_1^N(t)$ - adiabatic RF-pulse amplitude $\delta v^N = v^N - v_{rf}^N$ - resonance offset

 δP_{S-T_0} in molecular hydrogen is converted into ^{15}N nuclei magnetization along the effective field in the rotating reference frame

Amplitude modulation of the CW-pulse provides adiabatic LAC passage

In a real SABRE-system, effective $S-T_0$ mixing takes place in molecular hydrogen

$$\hat{\rho}_S = \frac{1}{4}\hat{E} - (\hat{I}_1\hat{I}_2)$$
Conversion
$$\ln H_2$$

$$\hat{\rho}_{ZZ} = \frac{1}{4}\hat{E} - \hat{I}_{1_Z}\hat{I}_{2_Z}$$

There is no generation of SABRE-polarization at high field, because $\delta P_{S-T_0} \approx 0$

Single-frequency pulse sequence becomes completely ineffective

Danil A. Markelov, Vitaly P. Kozinenko et al. Singlet to triplet conversion in molecular hydrogen and its role in parahydrogen induced polarization // Phys. Chem. Chem. Phys., 2021, 23, 20936-20944.

How to make the pulse sequence effective once again?

Single-frequency pulse sequence is ineffective

LAC condition: $v_1^N(t) \approx v_1^H$

High-field SABRE pulse sequences

RF-SABRE and SLIC-SABRE with linear RF-amplitude switching profile

 $v_1^H = 20 \, Hz$ – optimal value for RF-SABRE

[Catalyst] = 2 mM, [Substrate] = 70 mM. Other parameters: a) $t_{off} = 1 s$,

$$t_b = 20 \text{ s}, t_w = 0.5 \text{ s}$$

b), c) $t_{off} = 50 \text{ ms},$
 $t_d = 500 \text{ ms}, n = 50;$

RF-amplitude switching profile calculation

Linear RF-amplitude switch profile is not always optimal for effective generation of nuclear polarization

The main idea – slow RF-amplitude switch near the LAC region, and fast switch outside the LAC-region

1) Spin dynamics in a «static» SABRE-complex RF-amplitude switching profile calculation

1) The first way – Constant Adiabaticity Profiles (CAP) calculation

In this approach we don't take into account SABRE chemical dynamics

$$\frac{d}{dt}v_1^N(t) = -\xi_0 \{ \sum_{i \neq j} \frac{|\langle i | (\hat{I}_{Nx} + \hat{I}_{N'x}) | j \rangle|^2}{(E_i - E_j)^4} \}^{-\frac{1}{2}},$$

with initial condition (RF-SABRE):

$$v_1^N(0) = v_1^H + 10 Hz$$

Solve the equation in the AA'XX' symmetry group basis (to avoid Level-Crossing)

1) Spin dynamics in a «static» SABRE-complex

CAP calculation

$$\hat{\rho}_{S} = \frac{1}{4}\hat{E} - (\hat{I}_{1}\hat{I}_{2})$$

$$\hat{\rho}_{ZZ} = \frac{1}{4}\hat{E} - \hat{I}_{1_Z}\hat{I}_{2_Z}$$

In experiment we are limited by the lifetime of the SABRE complex and T_1 -relaxation time

Stationary value of magnetization for CAP's is reached at $t_{off} \leq T_1$

2) Spin dynamics taking into account chemical exchange RF-amplitude switch profile calculation

 The second way – extract RF-amplitude switch profile from experimental data and calculations which take into account chemical dynamics

Assumption:

$$\frac{t}{t_{off}}(v_1^N) = A \int_{v_1^N}^{v_1^N(0)} |P_z(v_1)| dv_1$$

Normalization constant

Here we use RF-pulses with constant amplitude (scanning)

2) Spin dynamics taking into account chemical exchange RF-SABRE experiments with different switching profiles

Comparison of the pulse sequences

Conclusions

- 1. The analysis of SABRE pulse sequences in a strong magnetic field based on adiabatic RF-amplitude modulation has been carried out. Various RF-switching profiles have been calculated and tested experimentally. It has been shown that SABRE chemical exchange essentially changes LAC's positions, and an approach to calculating switching-profiles based on LvN equation solution and experimental data has been proposed. For RF-SABRE with $\nu_1^H = 200$ Hz our profile works 3 times more efficient in comparison with linear profile
- 2. It has been shown that after experimental optimization, the biggest signal enhancement was achieved for SABRE with polarization cycles. Maximal enhancement equals 4000 has been achieved for SLIC-SABRE. Such enhancement factors are comparable with one obtained with ULF for our catalyst and substrate concentrations

Acknowledgements

Alexandra V. Yurkovskaya

Vitaly P. Kozinenko

Konstantin L. Ivanov

We acknowledge support from the Russian Ministry of Education and Science (Contract No. 075-15-2021-580)

Thanks for your attention!

Extra Slides

Extra slides Experimental setup

Extra slides SLIC-SABRE and RF-SABRE LAC's

SLIC-SABRE

LAC
$$|SS\rangle$$
 and $|T_0T_-\rangle$: $v_{eff}^N = -J_{HH'} - J_{NN'}$

LAC
$$|ST_{+}\rangle$$
 and $|T_{0}S\rangle$: $v_{eff}^{N} = -J_{HH'} + J_{NN'}$

$$|SS\rangle, |ST_{+}\rangle, |ST_{0}\rangle, |ST_{-}\rangle$$

LAC exchange

Polarization = 0

Polarization = -0.5

RF-SABRE

LAC
$$|ST_{+}\rangle$$
 and $|T_{+}S\rangle$: $v_{eff}^{N} = v_{1}^{H} - J_{HH'} + J_{NN'}$

LAC
$$|ST_{-}\rangle$$
 and $|T_{-}S\rangle$: $v_{eff}^{N} = v_{1}^{H} + J_{HH'} - J_{NN'}$

LAC
$$|SS\rangle$$
 and $|T_+T_-\rangle$: $v_{eff}^N = v_1^H - J_{HH'} - J_{NN'}$

LAC
$$|SS\rangle$$
 and $|T_-T_+\rangle$: $v_{eff}^N = v_1^H + J_{HH'} + J_{NN'}$

Polarization = ± 0.5

Extra slides

RF-SABRE magnetization calculation

RF-SABRE is still effective in the presence of singlet-triplet conversion in molecular hydrogen

Extra slides CAP calculation

$$\frac{d}{dt}v_1^N(t) = -\xi_0 \{ \sum_{i \neq j} \frac{|\langle i | (\hat{I}_{Nx} + \hat{I}_{N'x}) | j \rangle|^2}{(E_i - E_j)^4} \}^{-\frac{1}{2}},$$

with initial condition: $v_1^N(0) = v_1^H + 10 \text{ Hz}$

vve have to avoid LCs in order to calculate CAP	
correctly (calculation in AA'XX' symmetry group ba	asis)

$G_{AA'XX'}$	()	(12)(34)
A	1	1
В	1	-1
Spin representation =	16	4
10A+6B		

$$\mathbf{A} = \{T_{+}T_{+}, T_{+}T_{0}, T_{+}T_{-}, T_{0}T_{+}, T_{0}T_{0}, T_{0}T_{-}, T_{-}T_{+}, T_{-}T_{0}, T_{-}T_{-}, SS\},\$$

B -
$$\{T_+S, T_0S, T_-S, ST_+, ST_0, ST_-\}$$
.

Avoid LC's between different irreps

Extra slides

LvN equations with chemical exchange

$$\begin{cases} \frac{d\hat{\rho}_S}{dt} = \hat{\hat{L}}_S \hat{\rho}_S - W_a \hat{\rho}_S + k_d T r_{H_2} \{ \hat{\rho}_C \} \\ \frac{d\hat{\rho}_C}{dt} = \hat{\hat{L}}_C \hat{\rho}_C - k_d \hat{\rho}_C + W_a (\hat{\rho}_S \otimes \hat{\rho}_{H_2}^{Ir}) \end{cases}.$$

$$W_a = k_d \frac{[C]}{[S]} \qquad \hat{\hat{L}}_{C,S} = -i\hat{H}_{C,S} + \hat{\hat{R}}_{C,S}$$
$$\hat{\hat{H}}_{C,S}\hat{\rho}_{C,S} = [\hat{H}_{C,S}, \hat{\rho}_{C,S}]$$

$$T_1^{IrH} = 1 \text{ s}, T_1^{bS} = 3 \text{ s}, T_1^{fS} = 30 \text{ s}$$

Integral Encounter Theory equations

$$R_{ij,mn} = \frac{1}{2} \left(2J_{im,jn} - \delta_{jn} \sum_{l} J_{lm,li} - \delta_{im} \sum_{l} J_{lj,ln} \right)$$

Relaxation superoperator (extreme narrowing regime)

$$J_{ij,mn} = \sum_{k=1}^{n} \sum_{q=x,y,z} \frac{1}{T_{1,k}} \langle i | \hat{I}_{kq} | j \rangle \langle n | \hat{I}_{kq} | m \rangle \longrightarrow \text{Spectral density}$$

$$Tr\{\hat{\rho}_{C}\} = \frac{[C]}{[C] + [S]}, Tr\{\hat{\rho}_{S}\} = \frac{[S]}{[C] + [S]} \longrightarrow \text{Density matrix normalization}$$

Extra slides Spin-coupling constants

J_{ij} , Hz	H_1	H_2	N_1	N ₂
H ₁	_	-7	0	-20
H ₂	-7	_	-20	0
N_1	0	-20	_	-0,4
N ₂	-20	0	-0,4	-
δ, ppm in SABRE complex	-22.8	-22.8	255.15	255.15
δ, ppm free	4.5	4.5	300	300