

Effect of dihalide substituents on crystal structure and magnetic properties of cation [Mn^{III}(3,5-diHal-sal₂323)]⁺ complexes with BPh₄ anion

Kazakova Anna Vladimirovna

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Academician Semenov avenue 1, 142432, Chernogolovka, Russia E-mail: <u>kazakova@icp.ac.ru</u>

Application of spin-crossover compounds in modern electronic devices

One molecule is one information bit

> Display

Thermochromism

Spin-crossover complex based on Mn(III)

The first Mn(III) spin-crossover complex was synthesized in 2003.

Scheme of synthesis of Mn(III) spin-crossover complex:

Scheme of synthesis of complexes of the form [Mn^{III}(diHal-sal₂323)]BPh₄

Comp	oound	C(%)	H(%)	N(%)
(1)	Calc.	61,91	4,97	6,28
	Exp.	61,46	4,96	6,25
(2)	Calc.	56,30	4,52	5,70
	Exp.	57,47	4,64	5,91

* V.B. Jakobsen et al., *Angew. Chem. Int. Ed.* 2020, **59**, 13305 and S.Ghosh et al, *Dalton Trans.*, 2021,**50**, 4634-4642

Temperature dependence of χT product for ([Mn(3,5-Cl-sal₂-323)]BPh₄) in cooling (blue curve) and heating (red curve) modes with the inset showing the 8 K wide hysteresis transition.

Temperature dependence of χT product for ([Mn(3,5-Br,Cl-sal₂-323)]BPh₄) in cooling (blue curve) and heating (red curve) modes with the inset showing the 2 K wide hysteresis transition.

Structure and properties of [Mn(3,5-diF-sal₂323)]BPh₄

Temperature dependence of χT product for [Mn(3,5-diHal-sal₂-323)]BPh₄ in cooling and heating.

The coordination sphere of the Mn(III) ion in the [Mn(3,5-diF-sal₂-323)]BPh₄ complex at 100 and 240 K.

The general view of asymmetric units of compound diF. H atoms are omitted for clarity.

Comparison of crystal structures of two polymorphic modifications $[Mn(3,5-F-Br-sal_2323)]BPh_4$

N–H··· π_{Ph} ···H–N interactions between [Mn(3,5-FBr-sal₂323)]⁺ and BPh₄⁻ units, where N···C distances lie in the range of 3.26–3.40 Å K in **monoclinic phase**

Discrete N–H···C interactions (cyan lines) in **triclinic phase**. Green lines show the large distance N–H...C between cations and anions in **triclinic phase** (values in Å).

Conclusion:

- New Mn(III) complexes with ligands of the sal₂323 family containing two F, Cl or F and Br in positions 3 and 5 of the phenolate nucleus have been synthesized: [Mn(3,5-diF-sal₂323)]BPh₄ (1), [Mn(3,5-F,Br-sal₂323)]BPh₄ (2, monoclinic) and (3, triclinic). [Mn(3,5-diCl-sal₂323)]BPh₄ (4), [Mn(3,5-Br,Cl-sal₂323)]BPh₄ (5).
- Careful evaluation of the supramolecular structure of the complexes revealed strong correlation between the supramolecular packing forces and their magnetic properties.
- The nature of the dihaloid substituents and their position on the phenolate nuclear have a strong effect on the structure and magnetic properties of the Mn(III) complexes with the tetraphenylborate anion.
- The first polymorphic modifications among Mn(III) complexes with ligands of the sal_2323 family have been synthesized.

Acknowledgements:

- Prof. Yagubskii E.B.,
- Dr. Korchagin D.V.,
- Dr. Shilov G.V.
- Tiunova A.V.
- Prof. Vasiliev A.N.
- Zacharov K.V.

We acknowledge funding from the Ministry of Science and Higher Education of the Russian Federation (Grant No. 075-15-2020-779).

thank you for your attention

Figure. Crystal structures of complex diCl in *Cc* (240 K), Pc (160 K) and P1 (100 K) phases (BPh₄ anions and H atoms are omitted for clarity). a) Independent [Mn(3,5-diCl-sal-n-1,5,8)]⁺ cations with distorted MnN₄O₂ units shown as polyhedra. b) Schematic viewing of the SCO cations packing. Narrow and wide triangles mark smaller and larger angles between two average phenolate planes (NOC₇Cl₂) of 3,5-diCl-sal-N-1,5,8,12 ligand in the cations. L1, L2 and H1, H2 correspond to the low spin and high spin cations, respectively.

Figure. Powder X-ray diffraction pattern of polycrystalline samples of **5** and **6** : experimental (blue), and calculated from single crystal data (red).

Figure 9. The general view of asymmetric units of compound 3(a), 4(b) and 5(c). H atoms are omitted for clarity.

	3			4		5			
Parameter/Temp	100K	160K	240K	100K	160K	240K	100K (Mn1/Mn2)	160K(Mn1/Mn2)	240K(Mn1/Mn2)
Mn-O, Å	1.875(1)	1.870(1)	1.889(2)	1.871(2)	1.865(2)	1.883(2)	1.872(7) / 1.873(7)	1.874(7) / 1.888(7)	1.877(8) / 1.864(9)
Mn-Nie Å	2.001(1)	2.050(2)	2.089(2)	2.001(2)	2.064(3)	2.097(3)	2.115(9) / 2.104(9)	2.120(9) / 2.102(8)	2.12(1) / 2.12(1)
MD-Nam, A	2.059(1)	2.128(2)	2.179(2)	2.061(2)	2.146(3)	2.192(3)	2.229(9) / 2.203(9)	2.235(9) / 2.205(9)	2.21(1) / 2.20(1)
Σ, *	34.0	48.6	58.5	35.4	05 D	64.6	69.87668	69.5768.1	70.4768.3
Θ, °	106.8	160.1	198.8	106.2	175.4	210.1	260.8 / 230.7	258.9 / 235.0	259.4 / 237.4
ζÂ	0.414	0.584	0.708	0.427	0.842	0.749	0.802/0.748	0.80970.764	0.769 / 0.775

Table 1. Selected bond lengths and octahedral distortion parameters in 3-5^[a]

[a] Σ is the sum of the deviation from 90° of the 12 cis-angles of the MnN₄O₂ octahedron Θ is the sum of the deviation from 60° of the 24 trigonal angles of the projection of the MnN₄O₂ octahedron onto the trigonal faces. ζ is the distance distortion parameter, which is the sum of deviation from individual M-X bond distances with respect to the mean metal-ligand bond distance.