

X International Voevodsky Conference "Physics and Chemistry of Elementary Chemical Processes" (VVV-2022)

2022 Novosibirsk 05-09 Sep 2022

LANTHANIDE COMPLEXES WITH PHTHALOCYANINES

Gorbunova Yulia G.,^{1,2*}

MAGNETIC MATERIALS BASED ON SANDWICH

Martynov Alexander G.,² Polovkova Marina A.², Lapkina Lyudmila A.¹, Kirakosyan Gayane A.^{1,2}, Konarev Dmitry V.³, Tsivadze Aslan Yu.^{1,2}

¹Kurnakov Institute of General and Inorganic Chemistry RAS ²Frumkin Institute of Physical Chemistry and Electrochemistry RAS ³Institute of Problems of Chemical Physics RAS * E-mail: yulia@igic.ras.ru

In Memoriam – Brilliant Chemist, Professor Larisa Tomilova - 1947-2021

Natural porphyrins H₂N、 Fe NH₂ NC IH, HO H₂N ŃH₂ O H₂N[′] НÓ HO-**C**0 1111 `Oʻ

Mg

Factor F430 – a component of the enzymatic system of methanobacteria

Synthetic porphyrinoids: structural and functional diversity throughout core modification

Milestones in the history of sandwich Pc's Template reaction between phthalonitrile and Ln(OAc)₃

•Kirin I. S. et al. Formation of Unusual Phthalocyanines of the Rare-Earth Elements *Russ. J. Inorg. Chem.* **1965**, *10*, 1065

Either acid-base equilibrium or redox-process?

From prototypical double-decker to sophisticated sandwiches

Electronic interactions in sandwich complexes

Early years timeline of single molecule magnets

Transition-metal SMMs

 Ishikawa, N. et al.
Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level.
J. Am. Chem. Soc. 2003, 125 (29), 8694

Single-molecule magnetism of tetrapyrrole lanthanide compounds with sandwich multiple-decker structures

Hailong Wang^a, Bing-Wu Wang^b, Yongzhong Bian^a, Song Gao^{b,*}, Jianzhuang Jiang^{a,*}

Why is molecular magnetism still studied on examples of lanthanide sandwiches with tetrapyrrolic ligands?

Phthalocyanine-based sandwiches

- Relatively facile synthesis
- Stable towards aerobic conditions, moisture and high temperatures
 - Highly soluble
- Easily processable, forming crystals, thin films, hybrid materials, etc.

Influence of Peripheral Substitution on the Magnetic Behavior of Single-Ion Magnets Based on Homoand Heteroleptic Tb(III) Bis(Phthalocyaninate).

Chem. Eur. J. 2013, 19 (4), 1457–1465 DOI: 10.1002/chem.201202600.

•Gould, C. A.; McClain, K. R.; Reta, D.; Kragskow, J. G. C.; Marchiori, D. A.; Lachman, E.; Choi, E.-S.; Analytis, J. G.; Britt, R. D.; Chilton, N. F.; Harvey, B. G.; Long, J. R.

Ultrahard Magnetism from Mixed-Valence Dilanthanide Complexes with Metal-Metal Bonding.

Science 2022, 375 (6577), 198–202 DOI: 10.1126/science.abl5470.

Triple-decker complexes as multinuclear SMM

SMM behavior of crown-substituted trisphthalocyaninates

Temperature, K

1/T, K⁻¹

"Inverted" sandwich - one Pc ligand between two Ln metal centers

Phthalocyanine ligand can be a reservoir for one additional spin center due to oxidation or reduction

Complex undergoes demetallation upon reduction

Can we introduce more than three decks and more than two lanthanide ions in sandwich complexes?

Only few reports on highly reduced sandwich complexes, including

•Konarev, D. V.; Khasanov, S. S.; Batov, M. S.; Martynov, A. G.; Nefedova, I. V.; Gorbunova, Y. G.; Otsuka, A.; Yamochi, H.; Kitagawa, H.; Lyubovskaya, R. N.

Effect of One- and Two-Electron Reduction of Terbium(III) Double-Decker Phthalocyanine on Single-Ion Magnet Behavior and NIR Absorption.

Inorg. Chem. 2019, 58 (8), 5058

Covalently-linked sandwiches: clamshell and fused ligands

•Pushkarev, V. E. et al. *Chem. Eur. J.* **2012**, *18* (29), 9046

tBu.

•Wang, K. et al. *Chem. Eur. J.* **2013**, *19* (34), 11162

Coordination bonds linking double-deckers into multidecker sandwiches

(d)

J. Am. Chem. Soc. 2010, 132 (18), 6278

Supramolecular assembling of sandwiches

Heteroleptic crown-substituted tris(phthalocyaninates) as dynamic supramolecular scaffolds with switchable rotational states

M* = M = Tb: U_{eff} 223 K (zero dc) M* = Y, M = Tb: U_{eff} 169 K (1500 Oe dc) M* = Tb, M = Y: U_{eff} 130 K (1500 Oe dc)

Dalton Transactions 2016, 45 (22), 9320–9327

Inorganic Chemistry **2021**, 60 (12), 9110–9121

Heteroleptic crown-substituted tris(phthalocyaninates) as dynamic supramolecular scaffolds with switchable <u>magnetic properties</u>

J. Porphyr. Phthalocyanines 2022, 26 (04), 334–339
Polyhedron 2022, 219, 115792

1000/T, 1/K

Crown-substituted gadolinium bisphthalocyaninate as a molecular switcher

Gd[(15C5)₄Pc]₂

Intercalation of K⁺ ions switches coordination polyhedron from SAP to SP without formation of supramolecular polymers

Gd[(15C5)₄Pc]₂•4K+

Solvatochromic behavior of crown- *vs.* butoxy-substituted triple-decker complexes in aliphatic and aromatic solvents

•Martynov A.G., Polovkova M.A., Gorbunova Yu.G., Tsivadze A.Yu. *Molecules*, 2022, *submitted*

Solvatochromic behavior of crown- vs. butoxy-substituted triple-decker complexes in aliphatic and aromatic solvents

Martynov A.G., Polovkova M.A., Gorbunova Yu.G., Tsivadze A.Yu. Molecules, 2022, submitted

Solvation can stabilize conformational states

•Eur. J. Inorg. Chem. 2007, 4800–4807.

Weak Cl₃CH...O^{crown} contacts

Crowns are <u>needed</u> to stabilize staggered conformation in chlorinated alkanes

•THIS WORK!

(Pc)Tb[(15C5)₄Pc]Tb(Pc) - solvate with *o*-dichlorobenzene

Weak CI...CH^(Pc) contacts

Crowns are <u>not needed</u> to stabilize staggered conformation in aromatic solvents

Sandwich lanthanide complexes – multitools for studies of molecular magnetism

THANK YOU FOR ATTENTION!

The work was supported by the Ministry of Science and Higher Education of Russia (grant agreement No. 075-15-2020-779).