X International Voevodsky Conference "Physics and Chemistry of Elementary Chemical Processes" (VVV-2022) Novosibirsk 05-09 Sep 2022



## Burning times of boron, aluminum diboride and aluminum dodecaboride microparticles

#### <u>Glotov O. G.<sup>1, 2</sup>, Zamashchikov V. V.<sup>1</sup>, Belousova N. S.<sup>1, 2</sup>,</u> Bedarev I. A.<sup>3</sup>, Surodin G. S<sup>1</sup>

 <sup>1</sup>Voevodsky Institute of Chemical Kinetics and Combustion
<sup>2</sup>Novosibirsk State Technical University
<sup>3</sup> Khristianovich Institute of Theoretical and Applied Mechanics Novosibirsk, Russia

#### Contents

Introduction (metal fuels in rocket propellants, why B, AlB<sub>2</sub>, and AlB<sub>12</sub>)
Aim of work: t<sub>h</sub> (D)

#### **Experimental approach**

(ingredients, set-up, treatment)

**Results** (gaseous media characterization; burning times measurement)

#### Conclusions and future works





First edition Novosibirsk, 1929

Jubilee edition in English Novosibirsk, 1997





N - atomic number of a chemical element in periodic table

## **Boron has disadvantages...**

The amount of oxygen needed for
B oxidation is about 3 times larger
than that for AI



5



[ Rocket ram jet motors on solid and pastelike propellants // Sorokin V. A., Yanovsky L. S., Kozlov V. A., Surikov E. V. / Milyokhin Yu. M., Sorokin V. A. (Eds.) Moscow: Fizmatlit. 2010.] in Russian

## **Boron has disadvantages...**

6

#### Problems of chemical stability and compatibility with other propellant components



use

of



## **3.** It is difficult to burn up boron with a high conversion efficiency



#### "activate" boron combustion

#### How to provide the compatibility? How to activate boron combustion?

|           | В | AIB <sub>12</sub> | B <sub>4</sub> C | MgB <sub>2</sub> | AIB <sub>2</sub> |
|-----------|---|-------------------|------------------|------------------|------------------|
| Solutions | 1 | 0.83              | 0.78             | 0.47             | 0.44             |

- boron compounds (borides: AIB<sub>2</sub>, AIB<sub>10</sub>, AIB<sub>12</sub>, MgB<sub>2</sub>; carbide: B<sub>4</sub>C)
- boron alloys (AI-B mechanical alloys)
- mechanical activation
- functionalization of particle surface (covering)
- non-traditional oxidizers (KClO<sub>4</sub>)

#### Solid rocket motor vs Solid fuel ramjet



9

#### **Gas-generator scheme of SFRJ**



- 1 gas generator propellant grain
- 2 air inlet

10

- 3 gas generator's nozzle
- 4 afterburning chamber
- 5 afterburning chamber's nozzle



#### **Conclusion on Introduction:**

# One need to know the burning time *t<sub>b</sub>* for metal fuel particles

t<sub>b</sub> (D) - ?



#### **Experimental set-up**





#### **Experimental conditions**

#### Set-up features

#### □ No inert gas carrier stream

**Preheated gas mixture (610 K)** 

**Elevated oxygen concentration** 

### Gas flame parameters (calculated with PREMIX \ CHEMKIN-II)

| Initial gas mixture, % |                | Gas flow       |                   |                      | Product composition, %    |                       |                  |                 |                |
|------------------------|----------------|----------------|-------------------|----------------------|---------------------------|-----------------------|------------------|-----------------|----------------|
| $C_2H_6$               | O <sub>2</sub> | N <sub>2</sub> | rate<br>liter/min | <b>т</b> о, <b>К</b> | <u>Т</u> <sub>б</sub> , К | <b>O</b> <sub>2</sub> | H <sub>2</sub> O | CO <sub>2</sub> | N <sub>2</sub> |
| 6.4                    | 36.4           | 59.6           | 1.3               | 610                  | 2065                      | 21.47                 | 11.57            | 7.8             | 58             |



#### **Materials: SEM images**

The aluminum borides were prepared in the Laboratory of High-energy Systems and New Technologies at **Tomsk State University**'s Research Institute of Applied Mathematics and Mechanics **using SHS technology in an inert medium** 

**ASD-4** = aluminum ACД-4



**AIB2** = aluminum diboride

5um Bamor = amorphous boron B-99A



AIB12L = aluminum dodecaboride



#### Materials: particle size analysis

Bamor < AIB12L < AIB2 < ASD-4



Normalized mass distribution functions and mean sizes D<sub>mn</sub>

#### 16

#### **Treatment of video frames...**



#### <sup>17</sup>...treatment of video frames (continued)





#### Histogram for burning times t<sub>b</sub>

(Data for Bamor)



t<sub>b</sub>, ms

#### **Cumulative distribution function** of particle's diameters *D* and burning times *t*<sub>b</sub> (*Data for Bamor*)





#### **Results: aluminum ASD-4**





#### **Aluminum - comparison**





#### **Boron Bamor**





#### **Boron - comparison**





#### Aluminum diboride AIB2



#### 25

#### Aluminum dodecaboride AIB12L





#### **Conclusions and future works**

The burning times have been determined for AI, B, AIB<sub>2</sub> and AIB<sub>12</sub> microparticles in the practically interesting conditions



The experimental technique developed will be used for studying the other perspective fuels  $(MgB_2, B_4C, AIMgB_{14}, etc.)$ 



#### Acknowledgments

The authors are grateful to

Grant of the Ministry of Science and Higher Education of the Russian Federation № 075-15-2020-781



## Thank you for your attention !

