
Non-Markovian kinetic effects in the liquid-phase reaction A + A  C 
 

Kipriyanov Alexander Alexeevich,1* Kipriyanov Alexey A.,2 Doktorov Alexander B.1 

1 Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, 630090, Novosibirsk, Russia 

2 Novosibirsk State University, Pirogova 1, 630090, Novosibirsk, Russia 

* E-mail: alexander.kipriyanov@yandex.com 

 

Statement of the problem 

A consistent derivation of non-Markovian kinetic equations for the reversible reaction 

A + A  C was carried out in a previous work within the Integral Encounter Theory (IET) 

However, these equations have a narrowed time interval of applicability due to the 

inability of the method to describe the macroscopic correlations that arise during the reaction 

itself. These results were obtained earlier, in particular, for the irreversible reactions 

A + A  C and A + B  C. 

Modified Encounter Theory (MET) is a further development of the many-particle 

method for deriving non-Markovian kinetic equations and describes non-Markovian effects 

more accurately than IET, thus expanding the time interval of the theory's applicability 

The purpose of this study 

Application of Modified Encounter Theory methods to study non-Markovian effects in 

reversible reaction A + A  C 

Used assumptions 

In this study, we restrict ourselves to consideration of point particles, i.e. we will neglect 

the force interaction between the reactants. This will allow: 

 significantly simplify mathematical calculations 

 focus on the evolution of correlations between reactants, occurred due only to 

the chemical reaction 

For further derivation, let us turn to the basic equations for the Correlation Patterns 

(CP) obtained in the previous work, neglecting the force interactions 
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The equations for two-particle correlation patterns have the form 
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Despite the fact that only the two-particle correlation pair of reactants AA is included in the 

equation for local concentrations, the calculation of others is necessary due to the relationship 

of this CP with other CPs 
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Effective Pair Approximation (EPA) 

The construction of the effective pair approximation is based on separating the 

contribution of binary channels to the evolution of three particles. As shown in a number of 

papers, this approach reduces to the fact that in equations for two-particle CPs it is necessary 

to exclude completely correlated three-particle CPs from consideration, and in equations that 

take into account the remaining three-particle CPs, renormalize the reaction operators 

corresponding to the transition to the T-operators obtained in previous work 
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Further, to simplify mathematical calculations, we turn to the consideration of spatially 

homogeneous systems. In that case, the average concentration of the reactants coincides with 

the local concentration, and all two-particle CPs depend on the difference in the coordinates 

of the reactants in the pair 
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For T-operators we use their point approximations. As a result, we obtain a closed system of 

equations for correlation patterns in relative coordinates, corresponding to the Effective Pair 

Approximation (EPA) 
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Thus, taking into account the contribution of binary channels to the evolution of three-

particle correlation patterns significantly complicates the exchange of correlations between 

different pairs of reactants even in the absence of force interactions between them. This fact 

significantly distinguishes the equations obtained from the equations for correlation patterns 

within the framework of IET, where the contribution from three-body correlations is ignored. 

Although the system of equations for the correlation patterns is linear, its exact solution 

is very difficult, since the equations contain unknown concentrations nA(t) and nC(t) in their 

coefficients. Moreover, the solution of this system depends on the translational mobility of 

the reactants not only in the AA pair, but also in the AC and CC pairs, i.e., has a many-

particle (rather than two-particle) character. Below we present the formal solution of the 

resulting system of equations and the MET equation in general form 

 

Formal solution of the EPA equations 

We introduce matrix quantities according to the definition 
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Then the EPA equations in matrix form take the form 
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The solution of which can be formally represented as 
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The propagator of effective pair obeys the equation 
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Substituting the formal solution of the EPA equation into the matrix equation for the 

concentration yields the EPA kinetic equation 
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To obtain the MET kinetic equation, we use the approximate solution for the matrix T-

operators of the effective pair 
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Note that the obtained approximate expressions for T-operators as a sum of two terms reflect 

the physics of the phenomenon. The first terms are essential at the initial stage of the reaction 

and are completely determined by the pair T-operators. It is the second terms that distinguish 

the obtained MET equations from the IET equations and appear at long times due to the 

accumulation and decay of correlations between reactants in the course of reactions. These 

correlations are due to the dependence of paired encounters in solutions through the influence 

of the third particle from the volume on them. 

 

Conclusion and results 

 On the basis of a hierarchy of equations for correlation patterns in the 

thermodynamic limit and T-operators obtained earlier, a procedure for 

extracting the contributions from binary channels (two-particle correlations) into 

the evolution of three-particle completely correlated patterns is carried out. 

 This made it possible to obtain non-Markovian kinetic equations in the Effective 

Pair Approximation (EPA). Further calculation of the evolution of effective 

pairs made it possible to obtain non-Markovian integro-differential kinetic 

equations MET in a general form. 

 Obtained formal solution for T-operators of Modified Encounter Theory 

confirmed the effect of the dependence of pair encounters of reactants in 

solution, the presence of which are of great importance in binary theory. 
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