Electron spin resonance in situ study of Ni catalyst in catalytic transfer hydrogenation reaction conditions

S.S. Yakushkin, I.T. Kandarakova, N.S. Nesterov, A.A. Philippov, O.N. Martyanov

Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia. stas-yk@catalysis.ru

Ni-TiO₂ catalyst in the reaction

Ni-TiO₂ catalyst shows activity in the catalytic transfer hydrogenation reaction in supercritical i-PrOH media

It was shown, the catalytic activity increases with time as if the reduction of the catalyst happens [2]

in situ FMR reduction by H₂

Processes of the Ni nanoparticles formation can be studied by ferromagnetic resonance (FMR) in situ

Quartz reactor Temperature up to 1000 K Reduction/oxidation in situ Sensitive to nanoparticles size

in situ FMR, reactivation in SC i-PrOH

FMR in situ experiment on magnetic nanoparticles in the supercritical media

in situ, FMR reduction by SC i-PrOH Supercritical i-PrOH is capable of reducing NiO-TiO₂ sample without using gaseous H_2

Reduction temperature is 590 K, but the

In situ FMR reducing/passivation/reactivation of Ni-TiO₂ catalyst

Reduction of Ni-TiO₂ sample occurs at 600 K ((a)-(b)-(c))

Passivation in ~1% O_2 flow at 300 K leads to formation of NiO layer on the nanoparticles surface ((d)-(e))

Repeated reduction leads to the oxide layer removal ((e)-(f))

The research was supported by Russian Science Foundation (Project № 21-73-00244 <u>https://rscf.ru/en/project/21-73-00244/</u>.)