Crystallization of paramagnetic compounds in the gradient magnetic field of a superconducting magnet.

Energy of paramagnetic

bodies in a magnetic field

300 MHz Avance Bruker

Samsonenko Arkady A. 1,2, Artiukhova Natalya A. 1,2, Ovcharenko Victor I. 1, Kiryutin Alexey S. 1,2, Zhukov Ivan V. 1,2, Veber Sergey L. 1,2

¹International Tomography Center SB RAS, Novosibirsk, Russia ²Novosibirsk State University, Novosibirsk, Russia

I. General Information

II. General Crystallization Features

 $E(\theta) = \frac{1}{2\mu_0} \Delta \chi V B^2 \cos^2 \theta$

Magnetic field The presence of a forces moment from the magnetic field

Gravity

Magnetic field

III. Purpose of the work

• Development of new methods for obtaining paramagnetic compounds in the magnetic field of superconducting magnets

IV. Objectives

- To show the possibility of significant compensation of the gravity force acting on paramagnetic crystals
- To demonstrate possible directions of the development of the crystal growth method
- To characterize the field profile of an NMR magnet with a proton frequency of 300 MHz
- To demonstrate the crystallization features of paramagnetic compounds in a gradient magnetic field using CuSO4 * 5H2O crystals as an example

V. Features of the magnetic field distribution

VI. Characteristics of the magnetic field strength acting on CuSO4 · 5H2O

NMR Spectrometer VII. Temperature control system

VIII. Positioning system

IX. Setup photos

X. CoSO₄•7H₂O crystals

XI. CuSO₄ • 5H₂O crystals

XII. Crust of CuSO4 · 5H2O crystals

XI. Further research

XI. Crystal orientation

XII. Conclusion

- The field profile of an NMR magnet with a proton frequency of 300 MHz has been characterized
- The possible development of method for obtaining crystals in a magnetic field has been demonstrated.
- The setup has been developed that allows controlled growth of paramagnetic crystals in the magnetic field of a superconducting magnet

Forces at the interface

Separation of paramagnetic crystals