The calculation of Cohen pocket model

The calculation starts with the largest fraction. For each fraction, we calculated the number of particles per unit volume *N*, the distance between particles Δ, the volume of the pocket *V*, and the size of agglomerate $D_{\text{a}q\text{a}r}$

¹*Voevodsky Institute of Chemical Kinetics and Combustion,*

Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia ²*Novosibirsk State Technical University, Novosibirsk, Russia*

1. Development of a new model for estimating the size of metal agglomerates.

2. Comparing results of calculations with experimental data and other empirical correlations and models.

A tetrahedral pocket model

Estimated propellant structure

Acknowledgements. The work was supported by the Grant of the Ministry of Science and Higher Education of the Russian Federation (project 075-15-2020-781).

where $β_i$, α_i, $ρ_i$ are volume fraction, mass fraction and density of the i-th propellant component; $ρ$ is density; *V_{AP}* is the volume of AP inside the prism; *V_{prism}* is the volume of the prism; *D_{AP}* is AP size; *a* is the distance a between the centers of AP particles; V_{tetr} is the volume of the tetrahedron; V_{tetr DAP} is the volume of the tetrahedral parts occupied by AP; β_Me is the volume fraction of metal in reference propellant binder+Me.

Cohen pocket model

Simplifications of the Cohen model: 1) a regular cubic cell of oxidizer particles; 2) particles of the oxidizer and metal are monodisperse. Cohen pocket model

Aims of the work:

$$
N = \frac{\frac{6 \cdot \alpha_{AP}}{\pi \cdot D_{AP}^{3}}}{\alpha_{AP} \cdot \left(\frac{\rho_{ox}}{\rho_{AP}}\right) + \alpha_{Me} \cdot \left(\frac{\rho_{ox}}{\rho_{Me}}\right) + \alpha_{f} \cdot \left(\frac{\rho_{ox}}{\rho_{f}}\right)} \quad \Delta = \frac{1 - N^{1/3} \cdot D_{AP}}{N^{1/3}} \quad V_{p} = \left(\Delta + D_{AP}\right)^{3} - \frac{\pi}{6} \cdot D_{AP}^{3} \quad D_{agg} = \left(6 / \pi\right)^{1/3} \cdot \left(\gamma \cdot \alpha_{Me} \cdot V_{p}\right)^{1/3}
$$

where N is the number of large particles per unit volume of propellant; $D_{\sf AP}$ is the average size of the oxidizer; α_{AP} , α_{f} , α_{Me} are the mass fraction of oxidizer, binder and metal in the propellant; ρ_{ox} , ρ_{f} , ρ_{Me} are the density of the oxidizer, binder and metal; Δ is the distance between AP particles; V_{p} is effective pocket volume; D_{aqq} is the agglomerate size; γ is the proportion of molten metal.

The calculation of a tetrahedral pocket model

The calculation begins with the determination of the volume fractions of the components:

The iteration method is used to select the distance *a* between the centers of AP particles so that the volume fraction of AP in the triangular prism corresponds to the specified volume fraction of AP in the propellant

Volume of pocket: $V_{\text{pocket}} = V_{\text{ter}} - 4V_{\text{ter}}$ $\frac{V}{R} = \frac{V}{4.2} \left| a^3 - \frac{V_{AP}}{2} \right|$ Agglomerate size: $3 \quad \backslash$ $\frac{2}{\pi} \left(3^3 - \frac{D_{AP}^3}{\sigma^2} \right)$ Anglomerate size: $D = \left(\frac{6 \cdot \beta_{Me} \cdot V}{\sigma^2} \right)$ $4V_{\text{tetr,}D_{\text{eff}}} = \frac{V}{4.2} \left| a^3 - \frac{V_{AP}}{2} \right|$ Agglomerate size: $D_{\text{a}q\text{jetr,mod}}$ D_{AP}^3 Δ and one of a size: D $\left(6 \cdot \beta_{Me} \cdot V_{pocket}\right)^{12}$ π / \qquad $1/3$ | $\qquad \qquad$ agg tetr mod $6 \cdot \beta_{\text{Me}} \cdot V_{\text{pocket}}$ ["] $D_{\text{a} \alpha \text{ tetr mod}} = \left(\begin{array}{c} \text{P} \text{Me} \quad \text{pocket} \\ \text{P} \text{Me} \quad \text{pocket} \end{array} \right)$

> \bullet It is shown that the proposed tetrahedral pocket model in some cases gives better results for predicting the agglomeration diameter than other models.

(*p* = 4.3 MPa) (*p* = 4.4 MPa) $(D = 4.9 \text{ N})$ $=\frac{\alpha_i \cdot \rho}{\sigma_i}$

 $\pi \cdot D_{\lambda D}$

 A P \rightarrow V_{prism} \rightarrow $2\sqrt{2} \cdot a^3$

i

i

i

 $\beta_{AP}' = \frac{PAP}{14} = \frac{PP}{16} = \frac{P}{16}$ \cdot $D^3_{\tiny{\rm AP}}$ \parallel

 $\begin{array}{c} \n\mathcal{D}_{\textrm{AP}}^3 \\
\cdot \mathcal{a}^3\n\end{array}$

A POCKET MODEL WITH A TETRAHEDRAL CELL FOR ALUMINUM AGGLOMERATION IN COMPOSITE PROPELLANTS DELWITH A TETRAHEDRAL CELL
 AGGLOMERATION IN COMPOSITE
 PROPELLANTS
 $Q, G, G | \text{of } \text{ov} \vee 1/2$, A, A, Cheremisin¹
 Unstitute of Chemical Kinetits and Combustion,
 Unstitute of Chemical Kinetits and Combustion, **EL WITH A TETRAHEDRAL CELL**
 GGLOMERATION IN COMPOSITE
 COMPOSITE
 PROPELLANTS
 PROPELLANTS
 PROPELLANTS
 D. G. Glotov^{1,2}, A. A. Cheremisin's and combustion,

the Russian Accorder of Sciences Novosibissic, **ELAWITH A TETRAHEDRAL CELL**
 SGLOMERATION IN COMPOSITE
 COMPOSITE
 PROPELLANTS
 COMPOSITE
 PROPELLANTS
 COMPOSITE
 COMPOSITE
 COMPOSITE
 COMPOSITE
 COMPOSITE
 COMPOSITE
 COMPOSITE
 COMPOSITE
 C ELOWITH A TETRAHEDRAL CELL
 AGGELOMERATION IN COMPOSITE
 AGGELOMERATION IN COMPOSITE
 PROPELLANTS
 D. G. Glotov^{1,2}, A., A., Cheremisin¹
 Stitute of Chemical Kinetics and Combustion,
 EXERCATED ANTS
 Sti DEL WITH A TETRAHEDRAL CELL
 AGGLOMERATION IN COMPOSITE
 PROPELLANTS

O. G. Glottov^{1,2}, A. A. Cheremisin¹

Institute of Chemical Kinetics and Combustion,

the Russian Academy of Sciences, Novosibirsk, Russia

th **CONTRAT**
 CONTRATIFY
 CONTRATIFY
 CONTRATIFY
 CONTRATIFY
 CONTRATIFY
 CONTRAT CELL RAHEDRAL CELL
 RATION IN COMPOSITE

1.2, A. A. Cheremisin¹

Kinetics and Combustion,

Sinetics and Combustion,

of Sciences, Novosibirsk, Russia

ating the size of metal agglomerates.

Experimental data and oth **IFFRAHEDRAL CELL**
 ATION IN COMPOSITE

2, A. A. Cheremisin¹

etics and Combustion,

Sciences, Novosibirsk, Russia

(ty, Novosibirsk, Russia

gives of metal agglomerates.

gives to metal agglomerates.

entimental data **AHEDRAL CELL**
 SCOMPOSITE

Cheremisin¹

Combustion,

Novosibirsk, Russia

that agglomerates.

and other empirical correlations and models.
 en pocket model

each fraction, we calculated the number of

ticles Δ , **AHEDRAL CELL**
 N IN COMPOSITE

... Cheremisin¹

Combustion,

Novosibirsk, Russia

ibirsk, Russia

retal agglomerates.

and other empirical correlations and models.

nen pocket model

reach fraction, we calculated the **EXAMEDRAL CELL**
 V. Cheremisin¹
 V. Combustion,
 V. Combustion,
 V. Combustion,
 V. Combustion,
 V. Cheremisin¹
 V. Cheremisin¹
 *V. Cheremisinisky, Russia

<i>Nessia*
 N. Russia
 V. $=(\Delta + D_{\mu r})^2 - \$ **ALCELL**
 MPOSITE

Insignal

Insignal

Insignal

Insignal

Insignal

Insignal

D_{ogs} = $(6/\pi)^{93} \cdot (y \cdot \alpha_{\text{bin}} \cdot V_p)^{1/3}$

Is the average size of the

Interpresence is: V_p is

Insignal

Insignal

Insignal

Insignal
 Manumber of

and the
 $\alpha_{\text{Me}} \cdot V_p$ ^{1/3}

size of the

les; V_p is
 $\beta_i = \frac{\alpha_i \cdot \rho}{\rho_i}$
 $-\frac{\pi \cdot D_{AP}^3}{2\sqrt{2} \cdot a^3}$

ment; ρ is
 β_i size: a is **CONSTRANTIFULLER**
 CONSTRANTIFULLER

The number of the particles; V_p and the particles; V_p is rate.

The number of the particles; V_p is transitions; $\beta_i = \frac{\alpha_i \cdot \rho}{\nu_{\text{prior}}}$

The state of the particles; $\frac{\beta_i}{\nu$ AP AP prism 2 2 **SITE**
 SITE
 I and models.
 E number of
 \forall *Y*, and the
 V, *P*, *P*_{*N*}
 V, *P*, *P*_{*N*}
 *V*_{*N*}
 *V*_{*N*}
 *V*_{*N*}
 *N*_B
 *V*_{*N*}
 *V*_{*N*}
 ETRAHEDRAL CELL
 ITS
 A. A. Cheremisin' Comparison (CELL

A. A. Cheremisin' Comparison (CELL

Cities and Combustion,
 A. A. Cheremisin' Consider the construction of Cohen Case
 A. Movosibitists, Russia
 n Novo **THA TETRAHEDRAL CELL**
 DMERATION IN COMPOSITE
 COMPOSITE
 COMPOSITE
 COMPOSITE
 COMPOSITE
 COMPOSITE
 COMPOSITER
 COMPOSITER
 COMPOSITER
 COMPOSITER
 COMPOSITION SECTION COMPOSITIES
 CONFIDENTS
 **VITH A TETRAHEDR

COMERATION IN CONTRES**
 COMERATION IN CONTRES
 COMERATION IN CONTRES
 COMERATION IN CONTRES
 CONTRES
 CONTRES
 CONTRES
 CONTRES
 CONTRES
 CONTRES
 CONTRES
 CONTRES
 CONTRES
 CON 12 2 **VITH A TETRAHEDRAL CELL**
 LOMERATION IN COMPOSITE
 V COMERATION IN COMPOSITE
 COMERATION IN COMPOSITE
 COMERATION IN COMPOSITE
 CONEXATION COMERATION
 CONEXATION COMERATION
 CONEXATION
 CONEXATION
 CON SITE

Management of the number of
 $\cdot (r \cdot \alpha_{\text{Me}} \cdot V_p)^{v_3}$

ge size of the
 $\cdot (r \cdot \alpha_{\text{Me}} \cdot V_p)^{v_3}$

ge size of the

t, ρ_{ox} , ρ_f , ρ_{Me}

riticles; V_p is
 $\rho_i = \frac{\alpha_i \cdot \rho}{\rho_i}$
 $\frac{\nu_{AP}}{\pi} = \frac{\pi \cdot D_{AP}^3}{2\$ **ETRAHEDRAL CELL**
 FRAHEDRAL CELL
 FRAHEDRAL CELL
 FRS

A. A. Cheremisin¹
 *r s and Combustion,

<i>rences*, *Roussialsk, Russia

<i>Novosibirsk, Russia*
 Novosibirsk, Russia
 Novosibirsk, Russia
 rences, *Nov* **POSITE**
 POSITE
 r 1
 r 2
 r 2 **ETRAHEDRAL CELL**
 TION IN COMPOSITE
 A. A. Cheremisin, Russia
 A. A. Cheremisin, Russia
 A. A. Cheremisin, Russia
 ETGS
 A. A. Cheremisin, Russia
 EVALUATION
 EVALUATION
 EVALUATION
 EVALUATION
 EVAL ETRAHEDRAL CELL
 STION IN COMPOSITE
 A. A. A. Cheremisini **COMPOSITE**
 A. A. Cheremisini *Composition*
 Sciences, Novosibirsk, Russia
 N. Movosibirsk, Russia
 N. Movosibirsk, Russia
 N. Movosibirsk, Russia **ISSUE ASSESS AND CONSUSS AND CONSUSS AND CONSUSS AND CONSUMING AN AND CONSUMING AND CONSUSSIBLED AND CELT**
 CELT
 CELT POSITE

tions and models.

ted the number of

pocket V, and the
 $6/\pi$ ¹⁵³ · $(y \cdot a_{\text{two}} \cdot V_p)^{53}$

average size of the

popellant; $p_{0x}p_1p_0$ ($p_1 \cdot a_{\text{two}}p_1$)

AP particles; V_p is
 θ_p is θ_p
 $\theta_{\text{new}} = \frac$ **TETRAHEDRAL CELL**
 RATION IN COMPOSITE
 RATION IN COMPOSITE
 RATION IN COMPOSITE
 ANTS

1.2, A. A. Cheremisin¹

Sinces and Combustion,

of Sciences, Novosibirsk, Russia

at optics and Combustion, Russia

at opt **A TETRAHEDRAL CEL**
 ERATION IN COMPOSITE:
 ERATION IN COMPOSITE:
 ERATION IN COMPOSITE:
 ERATION IN COMPOSITE:
 We are the composition,
 We are the compositions, Russia fiversity, Novosibirsk, Russia fiversity **FA A TETRAHEDRAL CELL

LEARTION IN COMPOSITE**

LEARTION IN COMPOSITE

LEARTS
 $f(y)^{1/2}$, A. A. Cheremisin¹
 $\frac{1}{1}$ and *Kinetics and Combustion,*
 But Kinetics and Combustion,
 Diversity, Novosibirisk, Russia
 Duterque 2.42 80.26

Size of aluminum agglomerates

Empirical correlations and models of agglomerates

D Is AP particle size, µm; AP is the total AP fraction; AP,C is coarse fraction of AP; *Y* is the mass fraction of the component; ξ is the volume fraction of the component; r_{b} is burning rate, mm/s.

Comparing results of calculations with experimental data and other empirical correlations and models

Conclusion

 A new simplified tetrahedral pocket model has been developed for estimating the size of metal agglomerates during the combustion of a solid propellant.

 It is shown that, it is impossible to carry out calculations for the propellant containing 0.65 AP, 0.15 binder and 0.2 aluminum using the Cohen model. For this propellant, the distance between particles takes on a negative value $\Delta = -2.8$ µm, and the structure of such propellant does not correspond to cubic packing. The proposed tetrahedral model ($\Delta = 88$ µm) makes it possible to carry out calculations for propellants for which the Cohen model does not provide a solution.

Hermsen $=\frac{301.4}{r}$ $U_{\text{Salita}} = \frac{1}{r} \left(\frac{V}{V} + V\right)^2$ AP and \overline{b} \overline{b} 907.4 and $D = \frac{869}{200}$ $D_{\text{Hermsen}} = \frac{907.4}{N}$ $D_{\text{Salita}} = \frac{000}{(N - M)^2}$ Salita $r_{\scriptscriptstyle h} \cdot \left(Y_{\scriptscriptstyle \rm AP} + Y_{\scriptscriptstyle \rm Al} \right)^2$ AP $'$ $'$ Al J $\frac{869}{b^2(\gamma_{AP} + \gamma_{Al})^2}$ $D_{\text{Salita}} = \frac{000}{\sqrt{2}}$ ζ_{Al} n ζ_{Al} n ζ_{Al} n $\zeta_{AP,C}$ $\rho_{AP,C}$ $\rho_{AP,C}$ $\rho_{AP,C}$ $\rho_{AP,C}$ $1/3$ AP,C $/$ \sqrt{P} A C / V AP $^{\prime}$ AP $^{\prime}$ AP $^{\prime}$ 1 $2(\xi_{APC})$ APC coner $(\rho_{AP}Y_{APC})$ and $(\tau_{AP}Y_{AP})$ $\rho_{\rm Al}$ $\mathsf{Y}_{\rm Al}$ $\qquad \qquad$ ρ_{AP} $\mathsf{Y}_{AP,C}$) 1/3 and the set of the AP,C Cohen $\overline{}$ $\overline{}$ P,C \bigcup $\left| \frac{Y_{\text{Al}}}{Y_{\text{Al}}}\right| = D_{\text{AP C}}$ Y_{APC} $\left| \begin{array}{ccc} & -\text{AP}, \text{C} \\ & & \end{array} \right|$ $D_{\text{Cohen}} = \left| \frac{P_{\text{Al}}'_{\text{Al}}}{V} \right| \quad D_{\text{AP C}}$ D_{Cohen} **00.00** $D_{\text{Duteronie}} = 2.42 \frac{P_{\text{Cohen}}}{P} + 80.26$

 The experimental data are compared with the results of calculations using the tetrahedral model, the Cohen model, and the empirical correlations of Hermsen, Salita, Beckstead, Grigoriev, Duterque.

b

 $I_{AP} = \frac{V_{AP}}{16.5} = \frac{16 V_{AP}}{16.5}$

I. V. Sorokin¹, O. G. Glotov^{1,2}, A. A. Cheremisin¹

r