Quantitative metabolomic profiling of blood serum during the
autophagy modulation by NMR spectroscopy

Snytnikova Olga A.,*” Kozhevnikova Oyuna S. ?, Tsentalovich Yuri P.1

linternational Tomography Center SB RAS, Institutskaya, 3a, 630090, Novosibirsk, Russia
°The Federal Research Center Institute of Cytology and Genetics SB RAS, Academician Lavrentiev Avenue 10, 630090, Novosibirsk, Russia

E-mail: snytnikova olga@tomo.nsc.ru

o
Background Materials and methods
Autophagy is a process of intracellular self-destruction that balances synthesis and degradation. It is a . Extraction Low molecular weight
. . . : . . . Wi - ample
process of delivering the cytoplasmic material into lysosomes and then getting rid of unnecessary or Rat - 11 injection collection metabolites of serum
damaged cellular components in order to maintain cellular function. Autophagy allows cells to adapt to l
stress, mobilize their energy reserves, and decompose potentially harmful components. Autophagy is SRR S S 0 e h>
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involved in various processes: from fighting bacterial and viral infections to cell renewal in a 24 24 48
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developing embryo, it is also one of the main mechanisms for maintaining cellular and organismal Basal control ' ' ' ' ' ' >
homeostasis under conditions of starvation, diabetes, cardiovascular and infectious diseases, Control + PBS ——+ f ———t—— f ———t ::f: ———t f >
neurodegenerative diseases and many age-related diseases. Control + chloroquine L S S . L S >
Understanding the molecular mechanisms of activation and inhibition of autophagy, as well as the L] t L) t
mechanisms of its regulation, can serve as the basis for the development of new drugs and increase the . , , : : :
. asting t
effectiveness of cancer treatment methods.
The main goal of the present work was to study the quantitative changes in the concentrations of | | Fastne*chioroquine 1 1 R L
metabolites under conditions of induction and inhibition of autophagy in blood serum of senescent-
accelerated OXYS and Wistar at the age of 4 months. We explored the effects of (1) autophagy Using high-resolution 1H NMR spectroscopy we identified the quantitative content of 55 serum
activation by 48-h fasting, (2) inhibition by chloroquine (CQ) treatment and (3) combined effects of | | metabolites, including amino acids, organic acids, antioxidants, osmolytes, glycosides, purine and pyrimidine
fasting and CQ. derivatives.
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uate the differences in the metabolomic profiles of studied groups we S & S @ o O S 20
performed principal component analysis (PCA). Fasting induces significant 04— : : : : 0-l— . . . . 0l— . . . . 0— . . . .
metabolomic changes along the first principal component (PC1), while changes Control Fasting PBS  CQ CQ+fasting Control Fasting PBS  CQ CQ+fasting Control Fasting  PBS  CQ CQfasting Control Fasting  PBS  CQ CQ+fasting
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both fasting animals and for the group of animals without food restriction. *p <0.05, ** p < 0.01, *** p < 0.001 vs. Wistar rats from the same treatment group (multiple comparisons test after two-way ANOVA / Kruskal-Wallis test)
\ #p <0.05, ## p <0.01, ## p < 0.001 vs. control or PBS group within the same strain of rats (multiple comparisons test after two-way ANOVA / Kruskal-Wallis testu
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ANOVA indicates that for several metabolites the effect of fasting depends on genotype. I S ———— S S
Arginine and Proline metabolism [ RN Arginine and Proline Metabolism [N O O
Beta?ne metabolism [ Spermidine and Spermine.t Biosynthesis [N 40 -
3-hydroxy-butyrate Acetone Acetoacetate G.ycmanﬁfi!ﬂiﬂiiiﬂliﬁ = P value Pnenyla\an':lzica::?rny:o’:ﬂg:Z:ZE;:::Q = P value 0 T 1 1 T T
100 400- Aminusugar.Melabuh.sm [ 6e-08 Histidine Metabolism [ IRMMM 2605 1 I_ I I I i C t I F t PBS C C f .
2500 H » " smmeriaRecycing D Fole Metanotsm [N Control Fasting PBS CQ CQ+fasting ontrol Fasting Q CQ+fasting
T e Ly5|.r|e Degradation (IR Malate-Aspartate Shuttle [T
2000 EIEI . 80 +300- # S ——— e —— Genotype: Fy 495.0, p=0.03 Treatment: Fy 49=33.4, p<0.0001
E| # ] ool — S [P il [ Treatment: F 49=15.2, p<0.0001 Interaction: Fs.¢5=4.5, p=0.004
g 1000 g : l # 2004 Tyrosine Metabolism [N Methionine Metabolism [N .
g 500 " D I e e —— Serine 2-hydroxy-3-methyl-butyrate
8 200:[ g 20- I;IE' 07 lj H il — i 150 15=
S L. 5 3 ke = ez gd * las : oo el e — " o
Control Fasting PBS CQ CQ+fast|ng Control Fasting PBS CQ CQ+fasting Control Fastmg PBS CQ CQ+fast|ng Ureacyce [ Amina Sugar Metabolism [0
) _ A Glutamate Metabolism  [0] Tryptophan Metabolism [0 % * % T
Kruskal-Wallis: H=46.1, 9 d.f., p<0.0001 Kruskal-Wallis: H=39.6, 9 d.f., p<0.0001 Kruskal-Wallis: H=32.5, 9 d.f., p=0.0002 Purine Metabolism [0 Glutamate Metabolism  [00] -
valine, Leucine and Isoleucine Degradalion | — valine, Leucine and Isoleucine Degradation % c 100 - g T [ 10 -
Pyruvaldehyde Degradation Methylhistidine Metabolism 9 5 g
S il R 0 4 b 0246 & g $ go £ I =
E Glycine annAslerme :elasu:\sm = Oxidation of Elranche:‘(:l'!am;al‘[yhn\lt.:ids ] GC) ﬁ ﬁ GC.) T g
2 imamats Metaboiem Slutatnane Wetbolem E— Enrichment Ratio Enrichment Ratio S 50- o 59 E
£ e ——— i The most affected metabolic pathways are citric acid cycle and metabolism of & S
o Ureacycle [N € Bile Acid Biosynthesis (IR € L. . _ A . _ . : j Q @)
= vl O arginine, proline, glycine, serine, methionine, betaine, cisteine, folate, and
- vl ——— o e s — tyrosine 0 U T 1 T 1
< = Ge-04 e 1e-02 Y - i i ; it I i : I st Control Fasting PBS CQ CQ+fastin
B Fomin esbiem i e e Mot The major interstrain differences correspond to different contributions of these Control Fasting PBS  CQ CQ+fasting g g
o \% e — s -5 Kpathways into the total picture of metabolomic changes. Treatment: Fy 4=8.9, p<0.0001 Kruskal-Wallis: H=30.0, 9 d.f., p=0.0006 j
R R e —— P . . . . . . . . . .
= vl —— el — « 48-hour fasting leads to significant changes in the serum metabolomic profile, primarily affecting metabolic pathways related to fatty acid metabolism
S 3 s g, . and to metabolism of several amino acids.
REREE R « Under CQ treatment, the most affected metabolites were citrate, betaine, cytidine, proline, tryptophane, glutamate and mannose.
o} 4 8 0 4 8 - - - - - - - - . -
e R « For many metabolites the effects of autophagy modulation depended on the animal genotype indicating a dysregulation of metabolome reactivity in
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glutamate, alanine, arginine, proline, and glutathione. * Revealed metabolic signatures characteristic to fasting and CQ treatment might provide an enhanced understanding for the mechanism connecting
\ / metabolism and autophagy. This work was supported by RFBR (Project 20-03-00234)




