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The study was performed with the use of the OXYS rat line, a model of early aging, one

of the manifestations of which is the development of a complex of AD signs. Wistar rats of
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Conclusion Future work
1. The general metabolic patterns of aging in the rats brain, which are involved in energy production pathways and in 1. Comparative quantitative analysis of blood metabolites of rats of different age;
metabolic shifts of neurotransmitters, have been established,; 2. Investigation of the effect of melatonin on the relationship between the age-
2. Concentrations of inhibitory neurotransmitters (GABA-glycine) increase, while those of excitatory neurotransmitters related features of the metabolomic profile and the development of AD signs
(glutamate) decrease, especially rapidly in OXYS rats. detected in OXYS rats.

Taken together, these shifts in neurotransmitter metabolism with age can impair neuronal transmission and lead to
memory loss. This work was supported by RSF (Project 22-24-20035)




