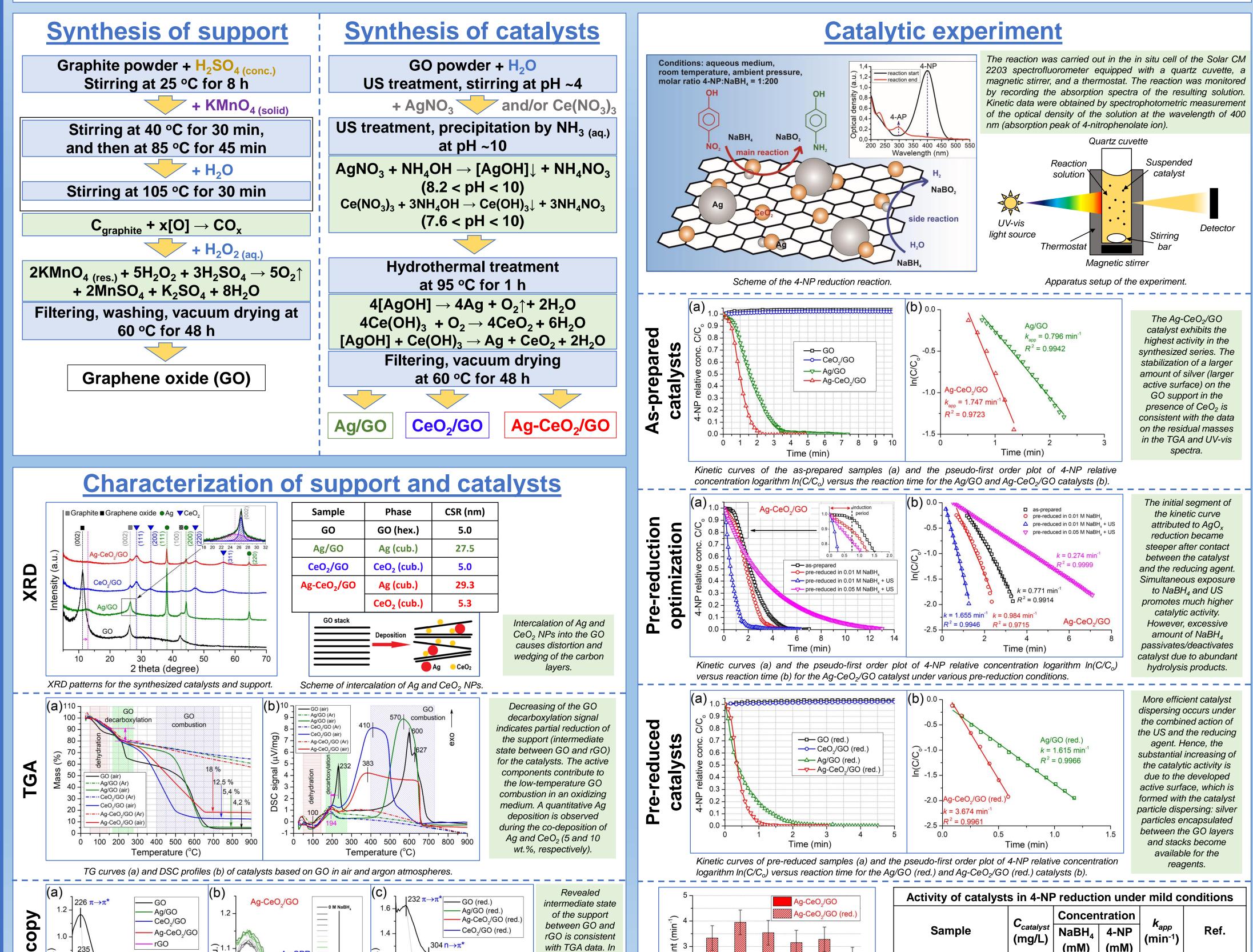
Study of 4-nitrophenol reduction over graphene oxide modified with Ag and CeO₂ nanoparticles by in situ UV-vis spectroscopy

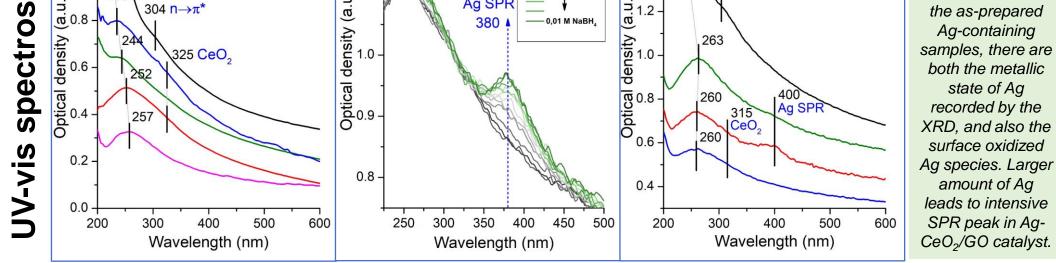
X International Voevodsky Conference Physics and Chemistry of Elementary **Chemical Processes**" Novosibirsk 05-09 Sep 2022

A.V. Taratayko*, G.V. Mamontov Tomsk State University, Tomsk, Russia *taratayko1997@mail.ru

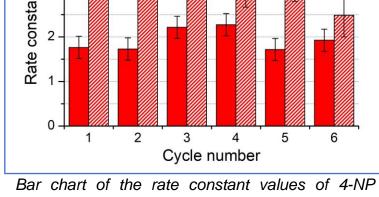


Introduction

The catalytic hydrogenation of nitroarenes under mild conditions addresses two challenges: efficient manufacturing of aromatic amines, valuable industrial intermediate compounds, and feasible removal of nitroarenes from wastewater followed by recycling. The Ag-containing catalysts are in the focus of green chemistry as advantageous systems due to relatively low cost, low-temperature activity, nontoxicity, and facile preparation and modification procedures [1]. Graphene, a two-dimensional carbon nanomaterial, and its derivatives (e.g., graphene oxide (GO),


reduced graphene oxide (RGO)) are considered promising environmentally benign adsorbents and catalyst supports [2].

This work aims to synthesize the Ag-CeO₂/GO systems and study their catalytic activity in the 4 nitrophenol (4-NP) reduction into 4-aminophenol (4-AP) at room temperature and ambient pressure. Special attention is given to the effect of co-deposition of Ag and CeO₂ onto GO and catalyst pretreatment on catalytic activity. The series of Ag- and/or CeO₂-containing catalysts are investigated by XRD, TGA, UV-vis spectroscopy.



with TGA data. In

t 3 the as-prepared

UV-vis spectra for aqueous suspensions of graphene derivatives and catalysts (C(sample) = 0.75 g/l) (a); the absorption spectra evolution with increasing in NaBH₄ concentration for the Ag-CeO₂/GO suspension (b); UV-vis spectra for aqueous suspensions of graphene derivatives and catalysts (C(sample) = 0.15 g/l) pre-reduced in 0.01 M NaBH₄ in the presence of US for 15 min (c).

reduction consecutive cycles over Ag-CeO₂/GO and Ag-CeO₂/GO (red.) catalysts.

The synthesized catalysts possess high catalytic activity comparable to the one of a number of catalysts for the 4-NP reduction, and in some cases exceeding it. The Aq-CeO₂/GO catalyst retains a good stability in the 4-NP reduction reaction upon a periodic reaction renewal.

Ag-CeO ₂ /GO	30	15	0.075	1.747	This work
Ag/GO	30	15	0.075	0.796	This work
Ag-CeO ₂ /GO (red.)	30	15	0.075	3.674	This work
Ag/GO (red.)	30	15	0.075	1.615	This work
RGO/Ag/CeO ₂	-	15	0.075	0.269	[3]
Ag-CeO ₂ /SBA-15	60	30	0.15	0.960	[4]
Ag@CeO ₂	10	20	0.13	1.920	[5]
Ag ₈₀ Ni ₂₀ @CeO ₂	10	0.08	400	6.231	[6]
Au-Ag-γ-Fe ₂ O ₃ /rGO	10	0.093	10	0.798	[7]
GO/Ag-Fe ₃ O ₄	6.7	0.1	33	1.602	[8]
Ag-Pt (9:1)	0.6	0.1	1.4	3.540	[9]
Ag@hm-SiO ₂	2	0.016	10	1.080	[10]

Conclusions

235

Conclusions	References	
. Graphene oxide (GO) is a promising matrix to stabilize small Ag and $CeO_2 NPs$. 2. The co-deposition of Ag and CeO_2 ensures developed active surface of Ag- CeO_2/GO . 3. The reaction is catalyzed by Ag NPs featuring a metallic surface state. NaBH ₄ educes both the surface AgO _x species and 4-NP. 4. High catalytic activity and stability of Ag-CeO ₂ /GO in 4-NP reduction by NaBH ₄ into 4-AP at room temperature and atmospheric pressure was revealed. 5. The catalytic activity of the pre-reduced catalysts increases upon simultaneous	 C. Wen, A. Yin, WL. Dai, Appl. Catal. B: Environ. 160-161 (2014) 730-741. M. Yusuf et al., Adv. Colloid Interface Sci. 273 (2019) 102036. Z. Ji et al., Appl. Catal. B: Environ. 144 (2014) 454-461. A. Taratayko et al., Catal. Today 375 (2021) 576- 584. Y. Shi et al., RSC Adv. 6 (2016) 47966-47973. 	 6. M. Kohantorabi et al., New J. Chem. 41 (2017) 10948-10958. 7. G. Lei et al., Ind. Nanomaterials 8 (2018) 877- 884. 8. J. Qu et al., Chem. Eng. J. 211-212 (2012) 412- 420. 9. S. Varshney et al., ChemCatChem 12 (2020) 4680-4688. 10. W. Li et al., Inorg. Chem. Front. 3 (2016) 663- 670.
exposure to NaBH, and US.	Acknowledgements	

exposure to NaBH₄ and US.

This work was supported by the Grant of the President of the Russian Federation (grant № MK-460.2021.1.3).