Presence of Maximal Characteristic Time in Photoluminescence Blinking of MAPbl₃ Perovskite

Podshivaylov Eduard A.,^{1*} Seth Sudipta,² Li Jun,² Gerhard Marina,³ Kiligaridis Alexander,² Scheblykin Ivan G.,² Frantsuzov Pavel A.¹

¹ Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, 630090, Novosibirsk, Russia ² Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden ³Faculty of Physics and Materials Sciences Center, Renthof 7a, Marburg 35032, Germany

podshivailov@kinetics.nsc.ru

Introduction

Materials and devices based on crystals with a perovskite structure have received close attention in the last decade. The high efficiency of converting light into electricity (>25%), the ability to create numerous substances with such a structure, and unusual elastic properties make perovskites indispensable in many applications.

Like systems with quantum-confined effects, perovskite microcrystals [1] and films [2] <u>exhibit the phenomenon of long-term</u> <u>changes in luminescence intensity, referred to as blinking</u>. To date, the reason for this behavior in perovskites remains unknown.

Results

Power spectral density fitting parameters obtained for different crystals are shown in **Fig. 4.** There is a slight correlation between the power law stretching exponent β and the characteristic blinking time τ . This dependence may be related to the size of the crystal, which thus acts as a hidden parameter.

A detailed description of the PMMA coated $MAPbI_3$ perovskite microcrystals samples preparation, as well as the detailed description of the luminescent microscope can be found in the original work [1].

Fig. 2. (a) SEM and **(b)** PL images of the studied PMMA coated MAPbl₃ crystals dispersed on a glass substrate. Locations shown on the two images are different.

Signal processing

The most popular method blinking analysis is to calculate the switching times distribution between two states. We used the following function to fit this distribution: $S(t) \sim \frac{1}{Ct^{\alpha} + t^{\gamma}} \exp\left(-\frac{t}{T}\right)$ The main disadvantage of this method is the strong <u>dependence</u> of the parameters on the threshold value.

Power spectral density analysis of very long PL blinking traces of MAPbI₃ sub-micrometer crystals revealed presence of a characteristic timescale in the range of 0.5 - 10 s contrary to the usually observed power law statistics.

Additional experiments were carried out using an exitation laser with different intensities, which differed by an order of magnitude for different experiments. On average, the exponent of stretched Lorentzian decreased with increasing intensity, which indicates the photoactivation nature of the blinking phenomena.

The second approach to the blinking analysis is to construct the process' autocorrelation function, or its Fourier transform – <u>power</u> <u>spectral density</u> (PSD). PSD turns out to obey stretched Lorentzian form:

Fig. 5. Excitation power dependent PL blinking of MAPbl₃. **(a)** PL traces obtained at different excitation powers, **(b)** corresponding intensity histograms. **(c)** The corresponding PSDs fitted with the stretched Lorentzian function **(d)** PSDs obtained from the normalized traces. **(e)** Statistics of the stretched Lorentzian exponents and characteristic times for 20 crystals.

References

[1] S. Seth *et al.*, *Adv. Energy Mater.* 2021, Vol. 11, No. 44.
[2] X. We *et al.*, *Nano Letters* 2015, Vol. 15, No. 7, pp. 4644-4649.

Acknowledgments

This work was supported by the Swedish Research Council (2020-03530) and Knut and Alice Wallenberg foundation (2016.0059). S.S. and P.F. thank the Wenner-Gren foundation for the postdoctoral (UPD2019-0230) and visiting (GFOh2018-0020) professor scholarships, respectively. J.L. thanks China Scholarship Council (CSC No. 201608530162) for a PhD scholarship. The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS" (22-1-5-36-1). Theoretical work was supported by the Russian Science foundation Project (20- 12-00202).