

Photochemistry of Sodium Thiosulfate in Aqueous Solutions: a Lot of Radicals

4

5

Evgeni Glebov^{1,2}, Ivan Pozdnyakov^{1,2}, Vjacheslav Grivin¹, Victor Plyusnin^{1,2}, Nikolai Egorov³

¹V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia ²Novosibirsk State University, Novosibirsk, Russia ³Tomsk Polytechnic University, Tomsk, Russia glebov@kinetics.nsc.ru

Why Thiosulfate?

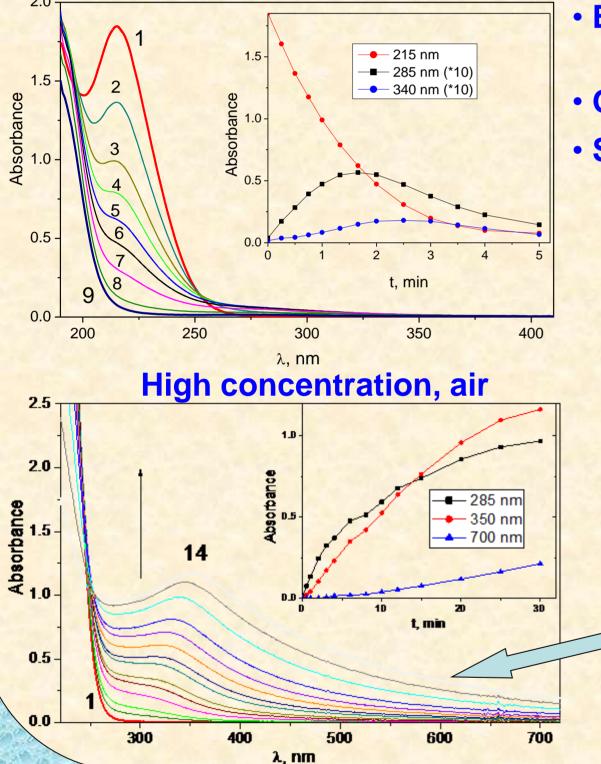
- Sodium thiosulfate (*hypo*) is widely used in industry and medicine
 - Historically it was employed in photography to fix black and white negatives and prints after the developing stage
 - Leaching agent in gold metallurgy
 - Wastewater purification etc.
 - Detoxifying and antihistamine active agent
- $S_2O_3^{2-}$ in photochemistry
 - Photochemical splitting of H₂S into hydrogen and sulfur
 - Additive for photovoltaic solar cells
 - Photochemical synthesis of thioperrhenates (N.B. Egorov)

However mechanism of photochemical reactions remains unclear.

Goal Mechanistic study of S₂O₃²⁻ photochemistry

Methods

Three Channels of Photolysis


Channel 1 (O₂-independent, selected reactions)

 $S_2O_3^{2-} \xrightarrow{hv} S_2O_3^{\bullet-} + e_{aq}^{\bullet-}$ $S_2O_3^{2-} \xrightarrow{hv} S^{\bullet-} + SO_3^{\bullet-}$ $S_2O_3^{\bullet-} + S_2O_3^{\bullet-} \rightarrow S_4O_6^{2-}$ 3.8×10⁸ M⁻¹s⁻¹ $e_{aq}^{-} + S_2O_3^{2-} \rightarrow S^{\bullet-} + SO_3^{2-}$ 1.6×10⁸ M⁻¹s⁻¹ $S_2O_3^{\bullet-} + S_2O_3^{2-} \Leftrightarrow S_4O_6^{3-}$ ightarrow 2.4×10⁶ M⁻¹s⁻¹ \leftarrow 1.5×10⁵ s⁻¹ $SO_3^{\bullet-} + SO_3^{\bullet-} \rightarrow SO_3^{2-} + SO_3$ 1.7×10⁸ M⁻¹s⁻¹ $S^{\bullet-} + S^{\bullet-} \rightarrow S_2^{2-}$ 6.3×10⁸ M⁻¹s⁻¹ $nS \rightarrow S_n$ $nS + 2SO_3^{2-} \rightarrow S_n(SO_3)_2^{2-}$ For ionic

- Steady-state photolysis
- Laser flash photolysis (YAG laser, 266 nm, 5 6 ns)

Stationary Photolysis

Low concentration, air

- Excitation at 222 nm CCTS type band
- Oxygen-dependent process
- Stable products:
 - Tetrathionate S₄O₆²⁻
 - secondary photolysis

Ο

2

3

- SO₃²⁻
- SO42-
- S_8 and S_n (n = 6, 7, 9, 12) Sols – in the presence of O_2
 - **Raffo sol formation. Contains of** polymeric sulfur S_n and polythionic acids $H_2S_mO_6$

Laser Flash Photolysis (266 nm)

 $S + SO_3^{2-} \rightarrow SSO_3^{2-}$

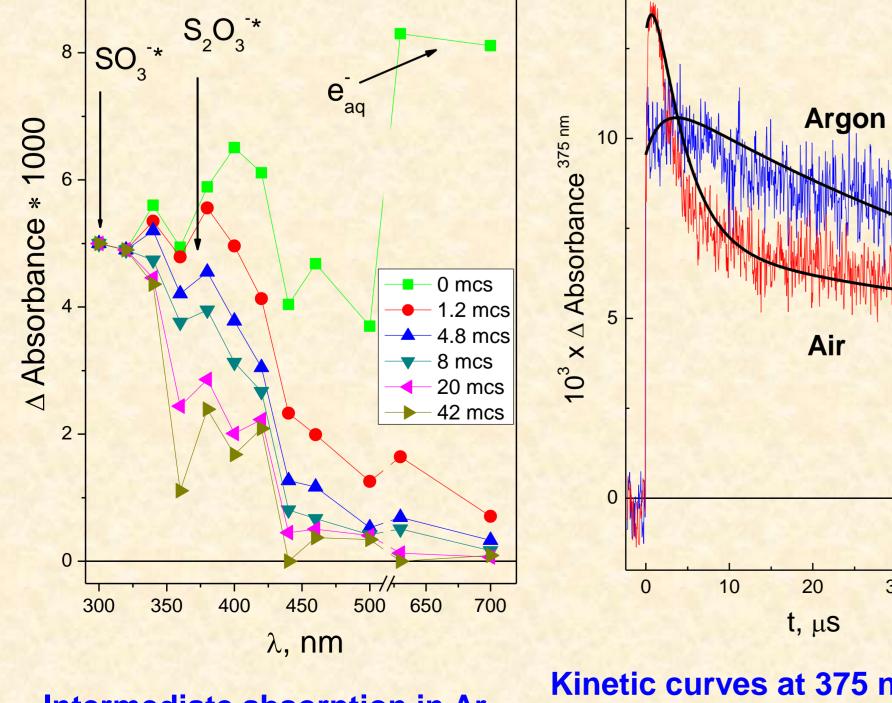
reactions I = 0.

Oxygen-Dependent Channels of Photolysis

Channel 2

 $S^{\bullet-} + O_2 \rightarrow SO_2^{\bullet-}$ $e_{aq}^- + O_2^- \rightarrow O_2^{--}$ $O_2^{\bullet-} + S_2O_3^{2-} \rightarrow SO_2^{\bullet-} + SO_3^{2-}$ $SO_2^{\bullet-} + O_2 \rightarrow SO_2 + O_2^{\bullet-}$ $SO_2 + H_2O \Leftrightarrow 2H^+ + SO_3^{2-}$

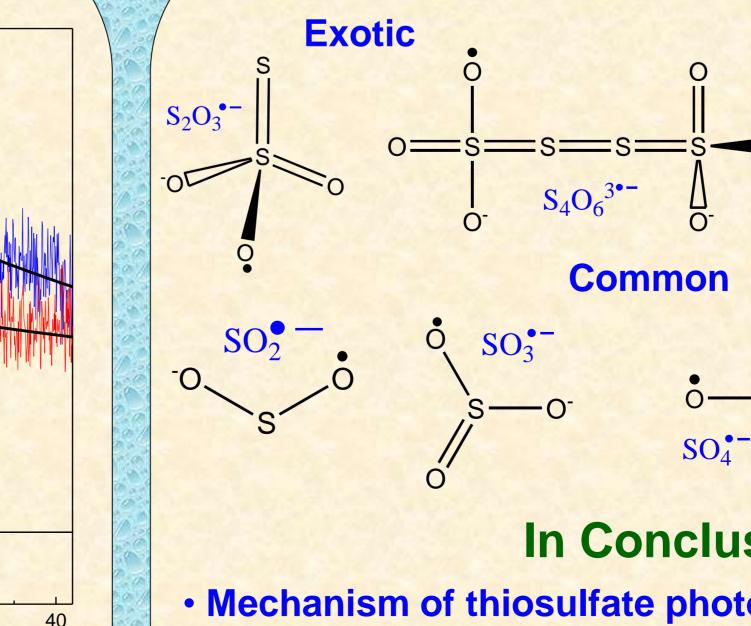
Channel 3 $S_2O_3^{2-} + O_2 \rightarrow [S_2O_3^{2-}...O_2]$ $[\mathbf{S}_2\mathbf{O}_3^{2-}...\mathbf{O}_2] \xrightarrow{hv} \mathbf{S}_2\mathbf{O}_3^{\bullet-} + \mathbf{O}_2^{\bullet-}$ $[S_2O_3^{2-}...O_2] \xrightarrow{hv} SO_3^{\bullet-} + SO_2^{\bullet-}$

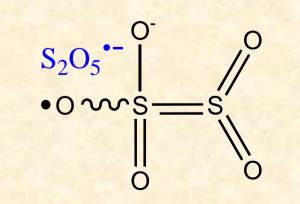

- In the presence of dissolved oxygen Channel 1 should be extended
- Chain process!
- O₂•- is a chain carrier
- Acidification accelerates sol formation

 Increase of S₂O₃ - and **SO**₃^{•-} yields in the presence of O₂

 Photolysis of weakly**bound complex formed** by $S_2O_3^2$ and O_2

About weakly-bound van der Waals complexes see e.g. [A.V. Baklanov, D.H. Parker, Kinet. Catal. 61 (2020) 174] and other works of A. Baklanov group.


Sulfur-Containing Radicals


Intermediate absorption in Arsaturated solution.

Kinetic curves at 375 nm fitted using complete reaction scheme.

30

Proposed by us

SO₅

In Conclusion

 Mechanism of thiosulfate photolysis was proposed 16 rate constants were measured or estimated Quantum chemical calculations of the radicals electronic/ absorption spectra are in progress