Investigation of degenerate electron exchange reactions involving short-lived radicals by the method of time-resolved CIDNP

Maksim P. Geniman^{1,2} ¹ITC SB RAS, Novosibirsk, Russian Federation ²NSU, Novosibirsk, Russian Federation

1. Abstract

The time-resolved CIDNP method can provide information about degenerate

4. Degenerate electron exchange

Table 1. Reorganization energies and pre-exponential factors found from the Arrhenius equation.

exchange reactions involving short-lived radicals. In the temperature range from 8 to 65°C, the degenerate electron exchange reactions of the guanosine-5'monophosphate cation GMPH⁺ with the dication radical GMPH^{++•} at pH = 1.3, of the guanosine-5'-monophosphate anion GMP(-H)⁻ with the neutral radical GMP(-H)• at pH = 11.3, of the N-acetyl tyrosine anion NacTyrO⁻ with a neutral radical NacTyrO[•] at pH = 11.7 and of the tyrosine anion TyrO⁻ with a neutral radical TyrO[•] at pH = 11.7 were studied. In all cases the radicals were formed in the reaction of quenching triplet 2,2'-dipyridyl. The reorganization energies were calculated using the Arrhenius equation. The rate constant of the reductive electron-transfer reaction in pair GMP(-H) $^{-}$ /TyrO⁻ was determined at T = 25°C. The rate of nuclear paramagnetic relaxation was found for the 3,5 and β-protons TyrO[•] and N-AcTyrO[•], the 8-proton GMPH^{++•} and GMP(-H)[•], the 3,4-protons DPH[•] at each temperature. In all cases, the dependences of the rate of nuclear paramagnetic relaxation on temperature are described by the Arrhenius dependence.

reaction	ln(A)	λ, eV
GMPH ^{++•} + GMPH ⁺	29.4 ± 0.6	0.81 ± 0.06
GMP(-H)• + GMP(-H)⁻	24.8 ± 0.6	0.42 ± 0.05
NacTyrO [•] + NacTyrO ⁻	24.4 ± 0.5	0.38 ± 0.05
TyrO• + TyrO⁻	27.1 ± 0.4	0.66 ± 0.04

Dependence of the DEE rate constant on temperature:

Fig.3. Arrhenius plot (A) for DEE between GMPH^{++•} + GMPH⁺ (black) and for DEE between GMP(-H)• + GMP(-H)⁻ (red) (B) for DEE between NacTyrO⁻ + NacTyrO⁻ (black) and for DEE between TyrO⁻ + TyrO⁻ (red).

5. T₁ relaxation in short-lived radicals

We assume that the main relaxation mechanism is the modulation of the HFI tensor due to the rotation of the whole molecule.

$$\frac{1}{T_1} \propto \frac{\tau}{1 + w^2 \tau^2} \approx \tau \quad \tau = \frac{4\pi a^3 \eta}{3kT} \qquad \eta(T) = \eta_0 exp\left(\frac{E}{RT}\right)$$
$$ln(\eta) = ln(\eta_0) + \frac{E}{RT} \quad ln\left(\frac{T}{T_1}\right) = ln(A) + \frac{E}{RT}$$

Then the temperature dependence of viscosity and T/T1 should coincide. For H35 TyrO[•], we assume the contribution of intramolecular rotations to relaxation, Fig. 4E shows a curve in the Lipari Szabo model. For H- β NacTyrO[•] and H- β TyrO[•] T₁ does not depend on T.

Fig.2. CIDNP kinetic curves obtained in the photoinduced reaction between (A) DP and TyrO⁻ at pH 11.7 for the H35 protons of TyrO⁻ at T = 55°C, C(TyrO⁻) = 2 mM (black), C(TyrO⁻) = 3.25 mM (red), C(TyrO⁻) = 4.5 mM (blue); C(DP) = 15 mM in all samples; (B) the same as in (A) for H- β protons of TyrO-; (C) DPH⁺ and GMPH⁺ at pH 1.3 for the H8 proton of GMPH⁺ and the H34 protons of DPH⁺ at T = 8°C, C(GMPH⁺) = 6 mM (black), $C(GMPH^+) = 12 \text{ mM} (red); C(DPH^+) = 0.5 \text{ mM} in all samples; (D) DP, TyrO^- and GMP(-H)^- at pH 11.7 for the$ H8 proton of GMP(-H)⁻ and the H35 protons of TyrO⁻ (insert) at T = 25°C, C(TyrO⁻) = 1.3 mM (red), C(TyrO⁻) = 2.5 mM (black); C(GMP(-H)⁻) = 4 mM and C(DP) = 15 mM in all samples. Solid lines are calculation, and points are experimental data normalized to the value at the initial moment.

Fig.4. Dependence of T_1 on T in coordinates ln(T/T1) - 1/T for protons (A) H8 GMPH^{++•} and H8 GMP(-H)[•] (B) H35 NacTyrO[•] and H35 TyrO[•] (C) H34 DPH[•] (D) H-β NacTyrO[•] and H-β TyrO[•] (E) H35 TyrO[•], the curve is plotted according to the Lipari-Szabo model.

5.	Conc	lusions
	COIL	IN JULIJ

• The rate constants of the DEE and nuclear paramagnetic relaxation times were determined in four systems in the temperature range 8-65°C.

H35 TyrO*

H34 DPH[•]

1130 ± 210

 1790 ± 300

- The rate constant for the electron transfer from the TyrO⁻ to the neutral radical GMP(-H)⁻ was determined at T = 25°C, $k_{red} = 1.48*10^8 \text{ M}^{-1}\text{s}^{-1}$.
- The reorganization energies were calculated using the Arrhenius equation.
- The dependences of the rate of nuclear paramagnetic relaxation on temperature are described by • the Arrhenius dependence.